精英家教网 > 高中数学 > 题目详情
20.将$y=sin(2x-\frac{π}{4})$的图象上所有点向左平移$\frac{π}{4}$后得到y=f(x)的图象,则y=f(x)在[-$\frac{π}{2}$,0]上的最小值为(  )
A.-1B.$-\frac{{\sqrt{2}}}{2}$C.0D.$-\frac{{\sqrt{3}}}{2}$

分析 由调价根据y=Asin(ωx+φ)的图象变换规律求得f(x)=sin(2x+$\frac{π}{4}$),再根据正弦函数的定义域和值域求得y=f(x)在[-$\frac{π}{2}$,0]上的最小值.

解答 解:将$y=sin(2x-\frac{π}{4})$的图象上所有点向左平移$\frac{π}{4}$后得到
y=f(x)=sin[2(x+$\frac{π}{4}$)-$\frac{π}{4}$]=sin(2x+$\frac{π}{4}$)的图象.
在[-$\frac{π}{2}$,0]上,2x+$\frac{π}{4}$∈[-$\frac{3π}{4}$,$\frac{π}{4}$],故当2x+$\frac{π}{4}$=-$\frac{π}{2}$时,f(x)取得最小值为-1,
故选:A.

点评 本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设函数f(x),g(x)都是[0,1]上的实值函数,证明:存在x0,y0∈[0,1],使得|x0y0-f(x0)-g(y0)|≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x3-3ax2+4,若f(x)存在唯一的零点x0,则实数a的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个组合体的主视图和左视图相同,如图,其体积为22π,则图中的x为(  )
A.4B.4.5C.5D.5.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,边长为$\sqrt{2}$的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=$\frac{1}{2}$AB=1,点M在线段EC上.
(Ⅰ)证明:平面BDM⊥平面ADEF;
(Ⅱ)判断点M的位置,使得平面BDM与平面ABF所成锐二面角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个几何体的三视图如图所示,则该几何体的体积是$\frac{20}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=sin(ωx+φ)的导函数y=f′(x)的部分图象如图所示,其中,A,C为图象与x轴的两个交点,B为图象的最低点,P为图象与y轴的交点.若在曲线段$\widehat{ABC}$与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若0<x<y<1,则下列不等式正确的是(  )
A.4y<4xB.x3>y3C.log4x<log4yD.${(\frac{1}{4})^x}<{(\frac{1}{4})^y}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{3}$,且该椭圆经过点$(\sqrt{3},\frac{1}{2})$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)经过点P(-2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1•k2的值.

查看答案和解析>>

同步练习册答案