精英家教网 > 高中数学 > 题目详情

【题目】如图,在半径为3圆形(为圆心)铝皮上截取一块矩形材料,其中点在圆弧上,点在两半径上,现将此矩形铝皮卷成一个以为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱的体积为.

1写出体积关于的函数关系式,并指出定义域;

2为何值时,才能使做出的圆柱形罐子体积最大?最大体积是多少?(圆柱体积公式: 为圆柱的底面积, 为圆柱的高)

【答案】(1)其中.(2)当 时,做出的圆柱形罐子体积最大,最大体积是 .

【解析】试题分析:(1)连接OB,在RtOAB中,由AB=x,利用勾股定理可得,设圆柱底面半径为r,则=2πr,即可得出r.利用V=πr2x(其中0x30)即可得出.(2)利用导数V′,得出其单调性,即可得出结论.

试题解析:

⑴连结,因为,所以,设圆柱底面半径为,则,即,所以,其中.

⑵由,得

列表如下:

极大值

所以当时, 有极大值,也是最大值为.

答:当 时,做出的圆柱形罐子体积最大,最大体积是 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在中,点在直线上,若的面积为10,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意m[-1,1]函数f(x)x2(m4)x42m的值恒大于零x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线与圆O: 且与椭圆C: 相交于A,B两点

(1)若直线恰好经过椭圆的左顶点,求弦长AB;

(2)设直线OA,OB的斜率分别为k1,k2,判断k1·k2是否为定值,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,命题椭圆C1 表示的是焦点在轴上的椭圆,命题,直线与椭圆C2 恒有公共点.

(1)若命题“”是假命题,命题“”是真命题,求实数的取值范围.

(2)若假时,求椭圆C1椭圆C2的上焦点之间的距离d的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(14分)关于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)

(1)已知不等式的解集为(﹣∞,﹣1]∪[2,+∞),求a的值;

(2)解关于x的不等式ax2+(a﹣2)x﹣2≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是平面,是直线,给出下列命题:

,则

,则

如果是异面直线,则相交;

,且,则,且

其中正确确命题的序号是_____(把正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且对任意正整数,满足.

(1)求数列的通项公式;

(2)若,数列的前项和为,是否存在正整数,使? 若存在,求出符合条件的所有的值构成的集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求过点,斜率是直线的斜率的的直线方程;

(2)求经过点,且在轴上的截距等于在轴上截距的2倍的直线方程.

查看答案和解析>>

同步练习册答案