精英家教网 > 高中数学 > 题目详情
20.某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:
积极参加班级工作不太主动参加班级工作合计
学习积极性高18725
学习积极性一般61925
合计242650
参考公式:K2=${\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}^{\;}}$,其中n=a+b+c+d.
P(K2≥k)0.250.150.100.0250.0100.0050.001
k1.3232.0722.7065.0246.6357.87910.828
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法分析:是否有99%的把握认为学生的学习积极性与对待班级工作的态度有关.并说明理由.

分析 (1)根据古典概型的概率公式计算概率即可;
(2)计算观测值x2的值,对照表中数据得出统计结论.

解答 解:(1)随机抽查这个班的一名学生,有50种不同的抽查方法,
由于积极参加班级工作的学生有18+6=24人,所以有24种不同的抽法,
因此由古典概型的计算公式可得抽到积极参加班级工作的学生的概率是P1=$\frac{24}{50}$=$\frac{12}{25}$,
又因为不太主动参加班级工作且学习积极性一般的学生有19人,
所以抽到不太主动参加班级工作且学习积极性一般的学生的概率是P2=$\frac{19}{50}$.
(2)由x2统计量的计算公式得x2=$\frac{50×(18×19-6×7)^{2}}{24×26×25×25}$≈11.538,
由于11.538>10.828,
所以可以有99.9%的把握认为“学生的学习积极性与对待班级工作的态度有关系”.

点评 本题考查了古典概型的应用问题,也考查了两个变量线性相关的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知点A(0,1),B(-2,3),C(-1,2),D(1,5),则向量$\overrightarrow{AC}$在$\overrightarrow{BD}$方向上的投影为$-\frac{\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.假设在100件产品中有3件次品,从中任意抽取5件,求下列抽取方法各有多少种?(必须计算出结果)
(Ⅰ)没有次品;
(Ⅱ)恰有两件是次品;
(Ⅲ)至少有两件是次品.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某人经营一个抽奖游戏,顾客花费3元钱可购买一次游戏机会,每次游戏中,顾客从标有黑1、黑2、黑3、黑4、红1、红3的6张卡片中随机抽取2张,并根据摸出的卡片的情况进行兑奖,经营者将顾客抽到的卡片情况分成以下类别:
A:同花顺,即卡片颜色相同且号码相邻;
B:同花,即卡片颜色相同,但号码不相邻;
C:顺子,即卡片号码相邻,但颜色不同;
D:对子,即两张卡片号码相同;
E:其他,即A,B,C,D以外的所有可能情况,
若经营者打算将以上五种类别中最不容易发生的一种类别对应顾客中一等奖,最容易发生的一种类别对应顾客中二等奖,其他类别对应顾客中三等奖.
(1)一、二等奖分别对应哪一种类别?(写出字母即可)
(2)若经营者规定:中一、二、三等奖,分别可获得价值9元、3元、1元的奖品,假设某天参与游戏的顾客为300人次,试估计经营者这一天的盈利.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一个球从32米的高处自由落下,每次着地后又回到原来高度的一半,则它第6次着地时,共经过的路程是94米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a,b,c分别为△ABC内角A,B,C的对边,$\overrightarrow m$=(-2a+c,b),$\overrightarrow n$=(cosB,cosC),且 $\overrightarrow m$•$\overrightarrow n$=0.
(1)求角B的大小;
(2)若b2=ac,求$\frac{1}{tanA}+\frac{1}{tanC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.有四个数:前三个成等差数列,后三个成等比数列.首末两数和为16,中间两数和为12.求这四个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.数列2,$\frac{4}{3},\frac{8}{5},\frac{16}{7},\frac{32}{9}$,…的一个通项公式an等于(  )
A.$\frac{2n}{2n-1}$B.$\frac{2^n}{n}$C.$\frac{2^n}{2n-1}$D.$\frac{2^n}{2n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知Sn=n2-1,则a2016=4031.

查看答案和解析>>

同步练习册答案