精英家教网 > 高中数学 > 题目详情
5.已知a,b,c分别为△ABC内角A,B,C的对边,$\overrightarrow m$=(-2a+c,b),$\overrightarrow n$=(cosB,cosC),且 $\overrightarrow m$•$\overrightarrow n$=0.
(1)求角B的大小;
(2)若b2=ac,求$\frac{1}{tanA}+\frac{1}{tanC}$的值.

分析 (1)运用向量的数量积的坐标表示,结合两角和的正弦公式,即可求得角B的值;
(2)结合余弦定理得到△ABC为等边三角形,问题得以解决.

解答 解:(1)$\overrightarrow m$=(-2a+c,b),$\overrightarrow n$=(cosB,cosC),且 $\overrightarrow m$•$\overrightarrow n$=0.
∴(-2a+c)cosB+bcosC=0,
∴(-2sinA+sinC)cosB+sinBcosC=0,
∴-2sinAcosB+sinCcosB+sinBcosC=0,
∴-2sinAcosB+sin(C+B)=0,
∴-2sinAcosB+sinA=0,
∴cosB=$\frac{1}{2}$,
∴B=60°,
(2)由余弦定理可得b2=a2+c2-2accosB=ac,
∴(a-c)2=0,
∴a=c,
又B=60°,
∴△ABC为等边三角形,
∴A=C=60°,
∴$\frac{1}{tanA}+\frac{1}{tanC}$=$\frac{1}{\sqrt{3}}$+$\frac{1}{\sqrt{3}}$=$\frac{2\sqrt{3}}{3}$

点评 本题考查向量的数量积的坐标表示,以及三角函数的化简和求值,考查正弦定理的运用,以及运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图在长方形ABCD中,已知AB=4,BC=2,M,N,P为长方形边上的中点,Q是边CD上的点,且CQ=3DQ,求 $\overrightarrow{MQ}$•$\overrightarrow{NP}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x-2|+|x+1|.
(1)作出函数y=f(x)的图象;
(2)解不等式|x-2|+|x+1|≥5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.为了测量灯塔AB的高度,第一次在C点处测得∠ACB=30°,然后向前走了20米到达点D处测得∠ADB=75°,点C,D,B在同一直线上,则灯塔AB的高度为$5(\sqrt{3}+1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:
积极参加班级工作不太主动参加班级工作合计
学习积极性高18725
学习积极性一般61925
合计242650
参考公式:K2=${\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}^{\;}}$,其中n=a+b+c+d.
P(K2≥k)0.250.150.100.0250.0100.0050.001
k1.3232.0722.7065.0246.6357.87910.828
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法分析:是否有99%的把握认为学生的学习积极性与对待班级工作的态度有关.并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线$\left\{\begin{array}{l}{x=sinθ+tsin15°}\\{y=cosθ-tsin75°}\end{array}\right.$(t为参数,θ是常数)的倾斜角是(  )
A.15°B.75°C.105°D.165°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知x∈R,m=x2-1,n=2x+2.求证:m,n中至少有一个是非负数.
(2)已知a,b,c均为正实数,且a+b+c=1,求证:($\frac{1}{a}$-1)($\frac{1}{b}$-1)($\frac{1}{c}$-1)≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知一元二次方程ax2+bx+c=0的系数a,b,c恰为双曲线的半实轴长,半虚轴长,半焦距,且此方程无实根,则双曲线离心率e的取值范围是(1,2+$\sqrt{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价x元和销售量y杯之间的一组数据如表所示:
价格x55.56.57
销售量y121064
通过分析,发现销售量y对奶茶的价格x具有线性相关关系.
(Ⅰ)求销售量y对奶茶的价格x的回归直线方程;
(Ⅱ)已知一杯奶茶的成本价为3元,根据(Ⅰ)中价格对销量的预测,为了获得最大利润,“奶茶妹妹”应该将奶茶的售价大约定为多少比较合理?
注:在回归直线y=$\hat b$x+$\hat a$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-,{\overline{x}}^{2}}$,$\hat a$=$\overline y$-$\hat b$$\overline x$.$\sum_{i=1}^4{{x_i}^2}$=52+5.52+6.52+72=146.5.

查看答案和解析>>

同步练习册答案