精英家教网 > 高中数学 > 题目详情
9.数列2,$\frac{4}{3},\frac{8}{5},\frac{16}{7},\frac{32}{9}$,…的一个通项公式an等于(  )
A.$\frac{2n}{2n-1}$B.$\frac{2^n}{n}$C.$\frac{2^n}{2n-1}$D.$\frac{2^n}{2n+1}$

分析 分别判断出分子和分母构成的数列特征,再求出此数列的通项公式.

解答 解:∵2,4,8,16,32,…是以2为首项和公比的等比数列,
且1,3,5,7,9,…是以1为首项,以2为公差的等差数列,
∴此数列的一个通项公式是an=$\frac{{2}^{n}}{2n-1}$,
故选:C.

点评 本题考查数列的通项公式,以及等差、等比数列的通项公式,考查学生分析解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.函数$f(x)=cosx({-\frac{π}{6}≤x≤\frac{2π}{3}})$的值域是[$-\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:
积极参加班级工作不太主动参加班级工作合计
学习积极性高18725
学习积极性一般61925
合计242650
参考公式:K2=${\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}^{\;}}$,其中n=a+b+c+d.
P(K2≥k)0.250.150.100.0250.0100.0050.001
k1.3232.0722.7065.0246.6357.87910.828
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法分析:是否有99%的把握认为学生的学习积极性与对待班级工作的态度有关.并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知x∈R,m=x2-1,n=2x+2.求证:m,n中至少有一个是非负数.
(2)已知a,b,c均为正实数,且a+b+c=1,求证:($\frac{1}{a}$-1)($\frac{1}{b}$-1)($\frac{1}{c}$-1)≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知角α终边上一点P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$的值.
(2)若sinx=$\frac{m-3}{m+5}$,cosx=$\frac{4-2m}{m+5}$,x∈($\frac{π}{2}$,π),求tanx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知一元二次方程ax2+bx+c=0的系数a,b,c恰为双曲线的半实轴长,半虚轴长,半焦距,且此方程无实根,则双曲线离心率e的取值范围是(1,2+$\sqrt{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,三棱柱ABC-A1B1C1的所有棱长都相等,且∠C1CB=120°.
(1)求证:BC⊥AB1
(2)若AB1=$\frac{\sqrt{6}}{2}$AB,求二面角C-AB1-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知幂函数f(x)=k•xα的图象经过点(${\frac{1}{2}$,$\frac{{\sqrt{2}}}{2}}$),则k-α=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在山顶铁塔上B处测得地面上一点A的俯角α=54°40′,在塔底C处测得A处的俯角β=50°1′.已知铁塔BC部分的高为27.3m,求出山高CD(精确到1m).

查看答案和解析>>

同步练习册答案