精英家教网 > 高中数学 > 题目详情
13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,向量$\overrightarrow{m}$=λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{n}$=$\overrightarrow{a}$+$μ\overrightarrow{b}$平行,且|$\overrightarrow{m}$|=2|$\overrightarrow{n}$|,则λ+μ=(  )
A.-$\frac{3}{2}$B.±$\frac{3}{2}$C.$\frac{5}{2}$D.$±\frac{5}{2}$

分析 以$\overrightarrow{a}$、$\overrightarrow{b}$为基底,用坐标表示出向量$\overrightarrow{m}$、$\overrightarrow{n}$,再根据$\overrightarrow{m}$∥$\overrightarrow{n}$与|$\overrightarrow{m}$|=2|$\overrightarrow{n}$|,列出关于λ、μ的方程组,求解即可.

解答 解:∵向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,
∴以$\overrightarrow{a}$、$\overrightarrow{b}$为基底,向量$\overrightarrow{m}$=λ$\overrightarrow{a}$+$\overrightarrow{b}$=(λ,1),
$\overrightarrow{n}$=$\overrightarrow{a}$+$μ\overrightarrow{b}$=(1,μ);
又$\overrightarrow{m}$∥$\overrightarrow{n}$,
∴λμ-1=0①;
又|$\overrightarrow{m}$|=2|$\overrightarrow{n}$|,
∴$\sqrt{{λ}^{2}+1}$=2$\sqrt{1{+μ}^{2}}$②;
由①②组成方程组,解得$\left\{\begin{array}{l}{λ=2}\\{μ=\frac{1}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{λ=-2}\\{μ=-\frac{1}{2}}\end{array}\right.$;
当λ=2,μ=$\frac{1}{2}$时,λ+μ=$\frac{5}{2}$;
当λ=-2,μ=-$\frac{1}{2}$时,λ+μ=-$\frac{5}{2}$.
故选:D.

点评 本题考查了平面向量的坐标表示与应用问题,也考查了向量的平行与模长的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\sqrt{3}$cos2x+sinxcosx.
(1)求f($\frac{π}{12}$)的值;
(2)若α∈(0,π),f($\frac{α}{2}$)=$\frac{1}{4}$+$\frac{\sqrt{3}}{2}$,求sin(α+$\frac{7π}{12}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求m为何值时,这三条直线l1:4x+y=4,l2:mx+y=0,l3:2x-3my=4,不能构成三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.秦九韶算法是中国古代求多项式f(x)=anxn+an-1xn-1+…+a1x+a0的值的优秀算法,直到今天仍很先进,若f(x)=6x5-2x4+20x3-1000x2+300x+70,则利用秦九韶算法易求得f(7)=100170.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若cosα=-$\frac{1}{3}$,则$\frac{cos(2π-α)sin(π+α)}{sin(\frac{π}{2}+α)•tan(3π-α)}$的值为-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某校为全面实施素质教育,大力发展学生社团,高一年级的五名同学准备参加“文学社”、“魔术社”、“思辨社”、“公益社”四个社团,若每个社团至少有一名同学参加,每名同学必须参加且只能参加一个社团,同学甲不参加“魔术社”,同学乙与同学丙不在同一个社团,则不同参加方法的种数为(  )
A.72B.162C.180D.216

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx
(Ⅰ)求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)证明:当x>1时,f(x)<x-1
(Ⅲ)设h(x)=f(x)-k(x-1),若h(x)存在最大值,且当最大值大于2k-2时,确定实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=-alnx+(a+1)x-$\frac{1}{2}{x^2}$(a>0).
(1)讨论函数f(x)的单调性;
(2)若f(x)≥-$\frac{1}{2}{x^2}$+ax+b恒成立,求$a∈[{\frac{1}{2},1}]$时,实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知抛物线y2=2px(p>0)的焦点与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点坐标都是(c,0),抛物线的准线方程为x=-$\frac{2{a}^{2}}{c}$,则双曲线的渐近线方程为y=±x.

查看答案和解析>>

同步练习册答案