精英家教网 > 高中数学 > 题目详情
1.秦九韶算法是中国古代求多项式f(x)=anxn+an-1xn-1+…+a1x+a0的值的优秀算法,直到今天仍很先进,若f(x)=6x5-2x4+20x3-1000x2+300x+70,则利用秦九韶算法易求得f(7)=100170.

分析 f(x)=6x5-2x4+20x3-1000x2+300x+70=((((6x-2)x+20)x-100)x+300)x+70,把x=7代入计算即可得出.

解答 解:f(x)=6x5-2x4+20x3-1000x2+300x+70=((((6x-2)x+20)x-100)x+300)x+70,
当x=7时,
∴v0=6,v1=6×7-2=40,v2=40×7+20=300,v3=300×7-100=2000,v4=2000×7+300=14300,v5=14300×7+70=100170.
则利用秦九韶算法易求得f(7)=100170.
故答案为:100170.

点评 本题考查了秦九韶算法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+3)=-f(x),且当x∈[0,3)时,f(x)=log4(x+1),给出下列命题:
①f(2015)>f(2014);                  
②函数f(x)在定义域上是周期为3的函数;
③直线x-3y=0与函数f(x)的图象有2个交点;        
④函数f(x)的值域为[0,1).
其中不正确的命题个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,则输出的结果是(  )
A.29B.30C.31D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,4)是C上一点,且|MF|=4.
(1)求点M的坐标和抛物线C的方程.
(2)若斜率为-1的直线与抛物线C交于不同的两点A(x1,y1),B(x2,y2),且y1≤0,y2≤0,当△MAB面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(1)已知f(x+1)=2x2-4x,则f(1-$\sqrt{2}$)=4+4$\sqrt{2}$;
(2)已知f(x)=$\left\{\begin{array}{l}{10(0<x)}\\{10x(x≥0)}\end{array}\right.$,则f[f(-7)]=100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆的离心率e=$\frac{4}{5}$,一条准线的方程为y=-$\frac{25}{4}$,求此椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,向量$\overrightarrow{m}$=λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{n}$=$\overrightarrow{a}$+$μ\overrightarrow{b}$平行,且|$\overrightarrow{m}$|=2|$\overrightarrow{n}$|,则λ+μ=(  )
A.-$\frac{3}{2}$B.±$\frac{3}{2}$C.$\frac{5}{2}$D.$±\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{lnx}{x}$.
(Ⅰ)求函数y=f(x)在点(1,0)处的切线方程;
(Ⅱ)设实数k使得f(x)<kx恒成立,求k的取值范围;
(Ⅲ)设g(x)=f(x)-kx(k∈R),求函数g(x)在区间$[\frac{1}{e},{e^2}]$上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的侧面积是(  )
A.$\sqrt{3}$B.πC.$2π+\sqrt{3}$D.$π+\sqrt{3}$

查看答案和解析>>

同步练习册答案