精英家教网 > 高中数学 > 题目详情
11.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的侧面积是(  )
A.$\sqrt{3}$B.πC.$2π+\sqrt{3}$D.$π+\sqrt{3}$

分析 三视图复原可知几何体是圆锥的一半,根据三视图数据,求出几何体的侧面积.

解答 解:由题目所给三视图可得,该几何体为圆锥的一半,
那么该几何体的侧面积为该圆锥侧面积的一半与轴截面面积的和.
又该圆锥的侧面展开图为扇形,
所以侧面积为$\frac{1}{2}$×2π=π,
观察三视图可知,轴截面为边长为2的正三角形,所以轴截面面积为$\frac{1}{2}$×2×2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
则该几何体的该几何体的侧面积为π$+\sqrt{3}$,
故选:D.

点评 本题考查三视图求表面积,考查空间想象能力,计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.秦九韶算法是中国古代求多项式f(x)=anxn+an-1xn-1+…+a1x+a0的值的优秀算法,直到今天仍很先进,若f(x)=6x5-2x4+20x3-1000x2+300x+70,则利用秦九韶算法易求得f(7)=100170.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=-alnx+(a+1)x-$\frac{1}{2}{x^2}$(a>0).
(1)讨论函数f(x)的单调性;
(2)若f(x)≥-$\frac{1}{2}{x^2}$+ax+b恒成立,求$a∈[{\frac{1}{2},1}]$时,实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线C1的方程为:x2=4y,圆C的方程为:x2+(y+r)2=r2(r>0),直线l为抛物线C1和圆C2的公共切线,切点分别为A及C′,F为抛物线C1的焦点,连结A,F交抛物线于点B.
(1)当r=1时,求直线l的方程;
(2)用r表示△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知双曲线x2-y2=m与椭圆2x2+3y2=72有相同的焦点,求m的值.
(2)求焦点在x轴正半轴上,并且经过点P(2,-4)的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.过点M(2,0)的直线l与抛物线C:y2=4x交于A,B两点,直线OA,OB(O为坐标原点)与抛物线C的准线分别交于点S,T.
(1)设F为抛物线C的焦点,k1,k2分别为直线FS,FT的斜率,求k1k2的值;
(2)求$\frac{1}{|MA|}$+$\frac{1}{|MB|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知抛物线y2=2px(p>0)的焦点与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点坐标都是(c,0),抛物线的准线方程为x=-$\frac{2{a}^{2}}{c}$,则双曲线的渐近线方程为y=±x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P(20,b)是抛物线x2=2py(p>0)上一点,焦点为F,|PF|=25,则该抛物线的方程为(  )
A.x2=20yB.x2=40yC.x2=20y或x2=40yD.x2=20y或x2=80y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知cosα-sinα=-$\frac{{\sqrt{3}}}{2}$,则sinα•cosα的值为(  )
A.$\frac{1}{8}$B.±$\frac{1}{8}$C.$\frac{1}{4}$D.±$\frac{1}{4}$

查看答案和解析>>

同步练习册答案