精英家教网 > 高中数学 > 题目详情
4.求m为何值时,这三条直线l1:4x+y=4,l2:mx+y=0,l3:2x-3my=4,不能构成三角形.

分析 三直线不能构成三角形时共有4种情况,即三直线中其中有两直线平行或者是三条直线经过同一个点,在这四种情况中,分别求出实数m的值

解答 解:①当直线l1:4x+y-4=0 平行于 l2:mx+y=0时,m=4.
②当直线l1:4x+y-4=0 平行于 l3:2x-3my-4=0时,m=-$\frac{1}{6}$,
③当l2:mx+y=0 平行于 l3:2x-3my-4=0时,-m=$\frac{2}{3m}$,m 无解.
④当三条直线经过同一个点时,把直线l1 与l2的交点($\frac{4}{4-m}$,$\frac{-4m}{4-m}$)代入l3:2x-3my-4=0得 $\frac{8}{4-m}$-3m×$\frac{-4m}{4-m}$-4=0,解得m=-1或$\frac{2}{3}$,
综上,满足条件的m为4、或-$\frac{1}{6}$、或-1、或$\frac{2}{3}$.

点评 本题考查三条直线不能构成三角形的条件,三条直线中有两条直线平行或者三直线经过同一个点,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在△ABC中,$\overrightarrow{A{P}_{0}}$=3$\overrightarrow{{P}_{0}B}$,∠C=120°,AC=2.且对于边AB上任意一点P,当且仅当P在P0时,$\overrightarrow{PB}$•$\overrightarrow{PC}$取得最小值,则下列结论一定正确的是(  )
A.∠BAC=45°B.S△ABC=$\frac{\sqrt{3}}{2}$C.AC=BCD.AB=$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知随机变量ξ+η=7,若ξ~B(10,0.6),则E(η),D(η)分别是(  )
A.1和2.4B.2和2.4C.2和5.6D.6和5.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,则输出的结果是(  )
A.29B.30C.31D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.方程2sin$\frac{2}{3}$x=1的解集是{x|x=3kπ+$\frac{π}{4}$或x=3kπ+$\frac{5π}{4}$,k∈Z }.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,4)是C上一点,且|MF|=4.
(1)求点M的坐标和抛物线C的方程.
(2)若斜率为-1的直线与抛物线C交于不同的两点A(x1,y1),B(x2,y2),且y1≤0,y2≤0,当△MAB面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(1)已知f(x+1)=2x2-4x,则f(1-$\sqrt{2}$)=4+4$\sqrt{2}$;
(2)已知f(x)=$\left\{\begin{array}{l}{10(0<x)}\\{10x(x≥0)}\end{array}\right.$,则f[f(-7)]=100.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,向量$\overrightarrow{m}$=λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{n}$=$\overrightarrow{a}$+$μ\overrightarrow{b}$平行,且|$\overrightarrow{m}$|=2|$\overrightarrow{n}$|,则λ+μ=(  )
A.-$\frac{3}{2}$B.±$\frac{3}{2}$C.$\frac{5}{2}$D.$±\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点,若|FQ|=2$\sqrt{3}$,则直线l的斜率等于$±\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案