精英家教网 > 高中数学 > 题目详情
15.对于直线m,n和平面α,以下结论正确的是(  )
A.如果m?α,n?α,m、n是异面直线,那么n∥α
B.如果m?α,n与α相交,那么m、n是异面直线
C.如果m?α,n∥α,m、n共面,那么m∥n
D.如果m∥α,n∥α,m、n共面,那么m∥n

分析 在A 中,n与α相交或平行;在B中,m与n相交或异面;在C中,由直线与平面平行的性质得m∥n;在D中,m与n相交或平行.

解答 解:由直线m,n和平面α,知:
在A 中,如果m?α,n?α,m、n是异面直线,那么n与α相交或平行,故A错误;
在B中,如果m?α,n与α相交,那么m与n相交或异面,故B错误;
在C中,如果m?α,n∥α,m、n共面,则由直线与平面平行的性质得m∥n,故C正确;
在D中,如果m∥α,n∥α,m、n共面,那么m与n相交或平行,故D错误.
故选:C.

点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若实数x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+y-4≥0\\ x≤5\end{array}\right.$,则$\frac{y}{x}$的最小值为-$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.抛物线x2=2py(p>0)的准线方程为y=-$\frac{1}{2}$,则抛物线方程为x2=2y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过点(1,-3)且平行于直线x-2y+3=0的直线方程为(  )
A.x-2y-7=0B.2x+y+1=0C.x-2y+7=0D.2x+y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2C-3cos(A+B)=1
(1)求角C的大小;
(2)若c=$\sqrt{6}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在R上的函数f(x)满足f(x+6)=f(x).当x∈[-3,-1)时,f(x)=-(x+2)2,当x∈[-1,3)时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2017)的值为(  )
A.336B.337C.1676D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+2mx+3m+4,
(1)若f(x)在(-∞,1]上单调递减,求m的取值范围;
(2)求f(x)在[0,2]上的最大值g(m).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点A(2,0),B(-1,3)在直线l:x-2y+a=0的两侧,则a的取值范围是(  )
A.a<-2,或a>7B.-2<a<7C.-7<a<2D.a=-2,或a=7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若g(x)=x-${∫}_{0}^{1}$g(t)dt-$\frac{3}{2}$,则g(x)=(  )
A.x+1B.x-1C.x-2D.x-$\frac{3}{2}$

查看答案和解析>>

同步练习册答案