| A. | x+1 | B. | x-1 | C. | x-2 | D. | x-$\frac{3}{2}$ |
分析 根据${∫}_{0}^{1}$g(t)dt是常数值,得出g(x)是一次函数,利用待定系数法即可求出g(x)的解析式.
解答 解:∵g(x)=x-${∫}_{0}^{1}$g(t)dt-$\frac{3}{2}$,
∵${∫}_{0}^{1}$g(t)dt为常数,
∴g(x)为一次函数,
设g(x)=ax+b,
${∫}_{0}^{1}$g(x)dx=($\frac{1}{2}$ax2+bx)|${\;}_{0}^{1}$=$\frac{1}{2}$a+b,
∴g(x)=x-${∫}_{0}^{1}$g(t)dt-$\frac{3}{2}$=x-($\frac{1}{2}$a+b)-$\frac{3}{2}$=ax+b,
∴a=1,b=-1,
∴g(x)=x-1,
故选:B
点评 本题考查了利用待定系数法求函数解析式的应用问题,也考查了定积分简单应用问题,是综合性题目.
科目:高中数学 来源: 题型:选择题
| A. | 如果m?α,n?α,m、n是异面直线,那么n∥α | |
| B. | 如果m?α,n与α相交,那么m、n是异面直线 | |
| C. | 如果m?α,n∥α,m、n共面,那么m∥n | |
| D. | 如果m∥α,n∥α,m、n共面,那么m∥n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<a≤$\frac{1}{3}$ | B. | a≤$\frac{1}{3}$ | C. | $\frac{1}{3}$≤a<1 | D. | a≥3或0<a<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $3\sqrt{3}$ | B. | 2$\sqrt{5}$ | C. | $4\sqrt{5}$ | D. | $-4\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n<10 | B. | n≤10 | C. | n≤1024 | D. | n<1024 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com