精英家教网 > 高中数学 > 题目详情
20.已知奇函数f(x)在R上为增函数,且f(1)=$\frac{1}{2}$,若实数a满足f(loga3)-f(loga$\frac{1}{3}$)≤1,则实数a的取值范围为(  )
A.0<a≤$\frac{1}{3}$B.a≤$\frac{1}{3}$C.$\frac{1}{3}$≤a<1D.a≥3或0<a<1

分析 由题意利用函数的奇偶性、单调性可得2f(loga3)≤1,即f(loga3)≤$\frac{1}{2}$=f(1),故有 loga3≤1,由此求得a的范围.

解答 解:奇函数f(x)在R上为增函数,且f(1)=$\frac{1}{2}$,
若实数a满足f(loga3)-f(loga$\frac{1}{3}$)≤1,∴f(loga3)+f(-${log}_{a}\frac{1}{3}$)=f(loga3)+f(loga3)=2f(loga3)≤1,
即f(loga3)≤$\frac{1}{2}$=f(1),∴loga3≤1,求得a≥3,或0<a<1,
故选:D.

点评 本题主要考查函数的奇偶性、单调性的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2C-3cos(A+B)=1
(1)求角C的大小;
(2)若c=$\sqrt{6}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数y=log2x在[1,a](a>1)上的最大值为2,则a=(  )
A.$\frac{3}{2}$B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=$\frac{1}{{\sqrt{x+1}}}$的定义域为(  )
A.(-1,+∞]B.(-1,0]C.(-1,+∞)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.画出下列函数的图象:
(1)F(x)=$\left\{{\begin{array}{l}{-2,({x≤0})}\\{1,({x>0})}\end{array}}$
(2)G(n)=3n+1,n∈{1,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若g(x)=x-${∫}_{0}^{1}$g(t)dt-$\frac{3}{2}$,则g(x)=(  )
A.x+1B.x-1C.x-2D.x-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系中,动圆经过点M(a-2,0),N(a+2,0),P(0,-2),其中a∈R.
(1)求动圆圆心的轨迹E的方程;
(2)过点P作直线l交轨迹E于不同的两点A、B,直线OA与直线OB分别交直线y=2于两点C、D,记△ACD与△BCD的面积分别为S1,S2.求S1+S2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足“f(x+y)=f(x)•f(y)”的是(  )
A.幂函数B.对数函数C.指数函数D.一次函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数为偶函数的是(  )
A.y=3x+4B.y=x2C.y=|x-1|D.y=$\frac{1}{x}$

查看答案和解析>>

同步练习册答案