| A. | 0<a≤$\frac{1}{3}$ | B. | a≤$\frac{1}{3}$ | C. | $\frac{1}{3}$≤a<1 | D. | a≥3或0<a<1 |
分析 由题意利用函数的奇偶性、单调性可得2f(loga3)≤1,即f(loga3)≤$\frac{1}{2}$=f(1),故有 loga3≤1,由此求得a的范围.
解答 解:奇函数f(x)在R上为增函数,且f(1)=$\frac{1}{2}$,
若实数a满足f(loga3)-f(loga$\frac{1}{3}$)≤1,∴f(loga3)+f(-${log}_{a}\frac{1}{3}$)=f(loga3)+f(loga3)=2f(loga3)≤1,
即f(loga3)≤$\frac{1}{2}$=f(1),∴loga3≤1,求得a≥3,或0<a<1,
故选:D.
点评 本题主要考查函数的奇偶性、单调性的综合应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,+∞] | B. | (-1,0] | C. | (-1,+∞) | D. | (-1,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+1 | B. | x-1 | C. | x-2 | D. | x-$\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 幂函数 | B. | 对数函数 | C. | 指数函数 | D. | 一次函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com