分析 先根据约束条件画出可行域,设z=$\frac{y}{x}$再利用z的几何意义求最值,只需求出何时可行域内的点与点(0,0)连线的斜率的值最小,从而得到z=$\frac{y}{x}$的最小值.
解答
解:先根据约束条件画出可行域,
设z=$\frac{y}{x}$,
将z的值转化可行域内的点与点(0,0)连线的斜率的值,
由$\left\{\begin{array}{l}{x=5}\\{x+y=4}\end{array}\right.$,可得A(5,-1),
在可行域内的A(5,-1)与O连线时,z=$\frac{y}{x}$的最小值为$-\frac{1}{5}$,
故答案为:$-\frac{1}{5}$.
点评 本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 4 | C. | 5 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 如果m?α,n?α,m、n是异面直线,那么n∥α | |
| B. | 如果m?α,n与α相交,那么m、n是异面直线 | |
| C. | 如果m?α,n∥α,m、n共面,那么m∥n | |
| D. | 如果m∥α,n∥α,m、n共面,那么m∥n |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com