精英家教网 > 高中数学 > 题目详情
10.某公司计划种植A,B两种中药材,该公司最多能承包50亩的土地,可使用的周转资金不超过54万元,假设药材A售价为0.55万元/吨,产量为4吨/亩,种植成本1.2万元/亩;药材B售价为0.3万元/吨,产量为6吨/亩,种植成本0.9万元/亩时公司的总利润最大,则A,B两种中药材的种植面积应各为多少亩,最大利润为多少万元?

分析 由题意,设A,B两种中药材的种植面积各x亩,y亩;从而可得约束条件,一年的种植总利润z=0.55×4x+0.3×6y-(1.2x+0.9y)=x+0.9y;从而由线性规划求最优解即可.

解答 解:设A,B两种中药材的种植面积各x亩,y亩;
则由题意可得,$\left\{\begin{array}{l}{x+y≤50}\\{1.2x+0.9y≤54}\\{x≥0}\\{y≥0}\end{array}\right.$;即:$\left\{\begin{array}{l}{x+y≤50}\\{4x+3y≤180}\\{x≥0}\\{y≥0}\end{array}\right.$
一年的种植总利润z=0.55×4x+0.3×6y-(1.2x+0.9y)=x+0.9y万元;
作平面区域如下,

结合图象可知,
$\left\{\begin{array}{l}{x+y=50}\\{4x+3y=180}\end{array}\right.$;
解得,x=30,y=20;此时一年的种植总利润最大;
那么A药材的面积是30亩;B药材的面积为20亩,
此时利润的最大值为:Z=30+0.9×20=48万元.
故答案为:A药材的面积是30亩;B药材的面积为20亩,利润的最大值为48万元.

点评 本题考查了线性规划在实际问题中的应用及学生的作图能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知集合A={-2,-1,1,2,4},B={y|y=log2|x|-3,x∈A},则A∩B=(  )
A.{-2,-1,0}B.{-1,0,1,2}C.{-2,-1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1具有相同的(  )
A.短轴长B.长轴长C.离心率D.对称轴

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知公比为正数的等比数列{an}中,a2a6=8a4,a2=2,则a1=(  )
A.8B.4C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若实数x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+y-4≥0\\ x≤5\end{array}\right.$,则$\frac{y}{x}$的最小值为-$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.命题“若lna>lnb,则a>b”是真命题(填“真”或“假”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=cos($\frac{x}{2}$-$\frac{π}{4}$),若f(α)=$\frac{1}{3}$,则sinα=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合M={x|x2-3x-18≤0},N={x|1-a≤x≤2a+1}.
(1)若a=3,求M∩N和∁RN;
(2)若M⊆N,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在R上的函数f(x)满足f(x+6)=f(x).当x∈[-3,-1)时,f(x)=-(x+2)2,当x∈[-1,3)时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2017)的值为(  )
A.336B.337C.1676D.2017

查看答案和解析>>

同步练习册答案