精英家教网 > 高中数学 > 题目详情
1.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1具有相同的(  )
A.短轴长B.长轴长C.离心率D.对称轴

分析 根据题意,由椭圆的标准方程分析可得椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1具有相同的对称轴;即可得答案.

解答 解:根据题意,椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1中a=5,b=3,
则其长轴长2a=10,短轴长2b=6,离心率e=$\frac{c}{a}$=$\frac{4}{5}$,对称轴为x、y轴,
而椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1中,a2的值未知,只能得到其对称轴为x、y轴,
则椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1具有相同的对称轴;
故选:D.

点评 本题考查椭圆的标准方程,注意由椭圆的标准方程分析焦点的位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设等差数列{an}的前n项和为Sn,若a1=-11,a3+a7=-6.
(1)求通项an
(2)则当Sn取最小值时,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知tanθ=2,则$\frac{1-sin2θ}{{2{{cos}^2}θ}}$的值为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$-\frac{1}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,已知BC=5$\sqrt{3}$,外接圆半径为5,若$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\frac{11}{2}$,则△ABC的周长为(  )
A.11$\sqrt{3}$B.9$\sqrt{3}$C.7$\sqrt{3}$D.5$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.命题p:函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x<0}\\{ln(x+1),x≥0}\end{array}\right.$且|f(x)|≥ax.q:函数g(x)为定义在R上的奇函数,当x≥0时,g(x)=$\frac{1}{2}$(|x-a2|+|x-2a2|-3a2),且?x∈R,f(x-1)≤f(x)恒成立.
(1)若p且q为真命题,求a的取值范围;
(2)若p或q为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆心在直线y=4x上,且与直线l:x+y-2=0相切于点P(1,1).
(Ⅰ)求圆的方程;
(II)直线kx-y+3=0与该圆相交于A、B两点,若点M在圆上,且有向量$\overrightarrow{OM}=\overrightarrow{OA}+\overrightarrow{OB}$(O为坐标原点),求实数k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+2,x≤0}\\{|2-x|,x>0}\end{array}\right.$,若f(-4)=f(0),则函数y=f(x)-ln(x+2)的零点个数有(  )
A.6B.4C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某公司计划种植A,B两种中药材,该公司最多能承包50亩的土地,可使用的周转资金不超过54万元,假设药材A售价为0.55万元/吨,产量为4吨/亩,种植成本1.2万元/亩;药材B售价为0.3万元/吨,产量为6吨/亩,种植成本0.9万元/亩时公司的总利润最大,则A,B两种中药材的种植面积应各为多少亩,最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x+asinx在(-∞,+∞)上单调递增,则实数a的取值范围是[-1,1].

查看答案和解析>>

同步练习册答案