分析 (Ⅰ)求出圆心与半径,即可求圆的方程;
(II)直线与圆联立:$\left\{\begin{array}{l}kx-y+3=0\\{x^2}+{y^2}=2\end{array}\right.$得:(1+k2)x2+6kx+7=0,利用韦达定理,M代入圆方程:${({x_1}+{x_2})^2}+{({y_1}+{y_2})^2}=2$,即可得出结论.
解答 解:(Ⅰ)设圆的方程为(x-a)2+(y-4a)2=r2
因为直线相切,圆心到直线的距离$d=\frac{|a+4a-2|}{{\sqrt{2}}}=r$,且圆心与切点连线与直线l垂直
$\frac{4a-1}{a-1}(-1)=-1$可得a=0,r=$\sqrt{2}$,所以圆的方程为:x2+y2=2…(6分)
(II)直线与圆联立:$\left\{\begin{array}{l}kx-y+3=0\\{x^2}+{y^2}=2\end{array}\right.$得:(1+k2)x2+6kx+7=0,
△=8k2-28>0,解得$k>\frac{{\sqrt{7}}}{2}或k<-\frac{{\sqrt{7}}}{2}$.
设A(x1,y1),B(x2,y2),${x_1}+{x_2}=-\frac{6k}{{1+{k^2}}},{x_1}{x_2}=\frac{7}{{1+{k^2}}}$,${y_1}+{y_2}=\frac{6}{{1+{k^2}}}$
M代入圆方程:${({x_1}+{x_2})^2}+{({y_1}+{y_2})^2}=2$,求得k=$±\sqrt{17}$…(12分)
点评 本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 10 | C. | 9 或 10 | D. | 10 或 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 0 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 短轴长 | B. | 长轴长 | C. | 离心率 | D. | 对称轴 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com