精英家教网 > 高中数学 > 题目详情
6.已知圆心在直线y=4x上,且与直线l:x+y-2=0相切于点P(1,1).
(Ⅰ)求圆的方程;
(II)直线kx-y+3=0与该圆相交于A、B两点,若点M在圆上,且有向量$\overrightarrow{OM}=\overrightarrow{OA}+\overrightarrow{OB}$(O为坐标原点),求实数k.

分析 (Ⅰ)求出圆心与半径,即可求圆的方程;
(II)直线与圆联立:$\left\{\begin{array}{l}kx-y+3=0\\{x^2}+{y^2}=2\end{array}\right.$得:(1+k2)x2+6kx+7=0,利用韦达定理,M代入圆方程:${({x_1}+{x_2})^2}+{({y_1}+{y_2})^2}=2$,即可得出结论.

解答 解:(Ⅰ)设圆的方程为(x-a)2+(y-4a)2=r2
因为直线相切,圆心到直线的距离$d=\frac{|a+4a-2|}{{\sqrt{2}}}=r$,且圆心与切点连线与直线l垂直
$\frac{4a-1}{a-1}(-1)=-1$可得a=0,r=$\sqrt{2}$,所以圆的方程为:x2+y2=2…(6分)
(II)直线与圆联立:$\left\{\begin{array}{l}kx-y+3=0\\{x^2}+{y^2}=2\end{array}\right.$得:(1+k2)x2+6kx+7=0,
△=8k2-28>0,解得$k>\frac{{\sqrt{7}}}{2}或k<-\frac{{\sqrt{7}}}{2}$.
设A(x1,y1),B(x2,y2),${x_1}+{x_2}=-\frac{6k}{{1+{k^2}}},{x_1}{x_2}=\frac{7}{{1+{k^2}}}$,${y_1}+{y_2}=\frac{6}{{1+{k^2}}}$
M代入圆方程:${({x_1}+{x_2})^2}+{({y_1}+{y_2})^2}=2$,求得k=$±\sqrt{17}$…(12分)

点评 本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.等差数列{an}中,a1>0,Sn 为前 n 项和,且 S3=S16,则 Sn取最大值时,n 等于(  )
A.9B.10C.9 或 10D.10 或 11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的函数f(x)满足f(x+2)+f(x)=0,x∈[0,2)时,f(x)=3x-1,则f(2015)的值为(  )
A.8B.0C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知在△ABC中,角A,B,C的对边分别为a,b,c,若a+b=2c,则∠C的取值范围为$(0,\frac{π}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1具有相同的(  )
A.短轴长B.长轴长C.离心率D.对称轴

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点与抛物线y2=4$\sqrt{3}$x的焦点重合,且该椭圆的离心率与双曲线$\frac{x^2}{3}-{y^2}$=1的离心率互为倒数.
(Ⅰ)求椭圆的方程;
(II)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(-a,0),点Q(0,y0)在线段AB的垂直平分线上,且$\overrightarrow{QA}$•$\overrightarrow{QB}$=4,求y0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知公比为正数的等比数列{an}中,a2a6=8a4,a2=2,则a1=(  )
A.8B.4C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.命题“若lna>lnb,则a>b”是真命题(填“真”或“假”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)=log3(x2+2x-8)的定义域为A,函数g(x)=x2+(m+1)x+m.
(1)若m=-4时,g(x)≤0的解集为B,求A∩B;
(2)若存在$x∈[0,\frac{1}{2}]$使得不等式g(x)≤-1成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案