精英家教网 > 高中数学 > 题目详情
12.已知tanθ=2,则$\frac{1-sin2θ}{{2{{cos}^2}θ}}$的值为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$-\frac{1}{2}$D.$-\frac{3}{2}$

分析 由已知,利用倍角公式,同角三角函数基本关系式,降幂公式化简所求即可计算得解.

解答 解:∵tanθ=2,
∴$\frac{1-sin2θ}{{2{{cos}^2}θ}}$=$\frac{si{n}^{2}θ+co{s}^{2}θ-2sinθcosθ}{2co{s}^{2}θ}$=$\frac{ta{n}^{2}θ+1-2tanθ}{2}$=$\frac{4+1-4}{2}$=$\frac{1}{2}$.
故选:A.

点评 本题主要考查了倍角公式,同角三角函数基本关系式,降幂公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,等式f(x)•f(y)=f(x+y)成立,若数列{an}满足f(an+1)=$\frac{1}{f(\frac{1}{1+{a}_{n}})}$,(n∈N+)且a1=f(0),则下列结论成立的是(  )
A.a2013>a2016B.a2014<a2016C.a2014>a2015D.a2016>a2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合U={1,4,5,6,7,8,9,10,11,12},A={6,8,10,12},B={1,6,8}.
(1)求A∪B,∁UA;
(2)写出集合A∩B的所有子集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={-2,-1,1,2,4},B={y|y=log2|x|-3,x∈A},则A∩B=(  )
A.{-2,-1,0}B.{-1,0,1,2}C.{-2,-1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow a$=(-2,1),$\overrightarrow b$=(1,λ),若$\overrightarrow a$∥$\overrightarrow b$,则λ=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的函数f(x)满足f(x+2)+f(x)=0,x∈[0,2)时,f(x)=3x-1,则f(2015)的值为(  )
A.8B.0C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系xOy中,圆C1:x2+y2-4x-8y+19=0关于直线l:x+2y-a=0对称,则实数a=10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1具有相同的(  )
A.短轴长B.长轴长C.离心率D.对称轴

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=cos($\frac{x}{2}$-$\frac{π}{4}$),若f(α)=$\frac{1}{3}$,则sinα=-$\frac{7}{9}$.

查看答案和解析>>

同步练习册答案