精英家教网 > 高中数学 > 题目详情
2.已知f(x)=cos($\frac{x}{2}$-$\frac{π}{4}$),若f(α)=$\frac{1}{3}$,则sinα=-$\frac{7}{9}$.

分析 由已知利用两角差的余弦函数公式,特殊角的三角函数值可求cos$\frac{α}{2}$+sin$\frac{α}{2}$=$\frac{\sqrt{2}}{3}$,两边平方后利用同角三角函数基本关系式,二倍角公式可求sinα的值.

解答 解:∵f(x)=cos($\frac{x}{2}$-$\frac{π}{4}$),若f(α)=$\frac{1}{3}$,
∴cos($\frac{α}{2}$-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(cos$\frac{α}{2}$+sin$\frac{α}{2}$)=$\frac{1}{3}$,解得:cos$\frac{α}{2}$+sin$\frac{α}{2}$=$\frac{\sqrt{2}}{3}$,
∴两边平方可得:1+sinα=$\frac{2}{9}$,解得:sinα=-$\frac{7}{9}$.
故答案为:-$\frac{7}{9}$.

点评 本题主要考查了两角差的余弦函数公式,特殊角的三角函数值,同角三角函数基本关系式,二倍角公式在三角函数求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知tanθ=2,则$\frac{1-sin2θ}{{2{{cos}^2}θ}}$的值为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$-\frac{1}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+2,x≤0}\\{|2-x|,x>0}\end{array}\right.$,若f(-4)=f(0),则函数y=f(x)-ln(x+2)的零点个数有(  )
A.6B.4C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某公司计划种植A,B两种中药材,该公司最多能承包50亩的土地,可使用的周转资金不超过54万元,假设药材A售价为0.55万元/吨,产量为4吨/亩,种植成本1.2万元/亩;药材B售价为0.3万元/吨,产量为6吨/亩,种植成本0.9万元/亩时公司的总利润最大,则A,B两种中药材的种植面积应各为多少亩,最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.执行如图所示的流程图,则输出的M应为2 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某工厂第一季度某产品月生产量分别为10万件,12万件,13万件,为了预测以后每个月的产量,以这3个月的产量为依据,用一个函数模拟该产品的月产量y (单位:万件)与月份x 的关系.模拟函数1:y=ax+$\frac{b}{x}$+c
;模拟函数2:y=m•nx+s.
(1)已知4月份的产量为13.7 万件,问选用哪个函数作为模拟函数好?
(2)受工厂设备的影响,全年的每月产量都不超过15万件,请选用合适的模拟函数预测6月份的产量.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)=ax5+bx3+$\frac{c}{x}$+3(a,b,c是实常数),且f(3)=2,则f(-3)的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x+asinx在(-∞,+∞)上单调递增,则实数a的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题中正确的是(  )
A.命题p:“?x0∈R,$x_0^2-2{x_0}+1<0$”,则命题?p:?x∈R,x2-2x+1>0
B.“lna>lnb”是“2a>2b”的充要条件
C.命题“若x2=2,则$x=\sqrt{2}$或$x=-\sqrt{2}$”的逆否命题是“若$x≠\sqrt{2}$或$x≠-\sqrt{2}$,则x2≠2”
D.命题p:?x0∈R,1-x0<lnx0;命题q:对?x∈R,总有2x>0;则p∧q是真命题

查看答案和解析>>

同步练习册答案