精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=
2
,PB⊥PD.求异面直接PD与BC所成角的余弦值.
分析:先通过平移将两条异面直线平移到同一个起点D,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.
解答:精英家教网解:∵PO⊥平面ABCD,∴PO⊥BD
PB⊥PD,BO=2,PO=
2

由平面几何知识得:OD=1,PD=
3
,PB=
6

过D做DE∥BC交于AB于E,连接PE,则∠PDE或其补角为异面直线PD与BC所成的角,
∵四边形ABCD是等腰梯形,
∴OC=OD=1,OB=OA=2,OA⊥OB
BC=
5
,AB=2
2
,CD=
2

又AB∥DC
∴四边形EBCD是平行四边形.
ED=BC=
5
,BE=CD=
2

∴E是AB的中点,且AE=
2

PA=PB=
6

∴△PEA为直角三角形,
PE=
PA2-AE2
=
6-2
=2

在△PED中,由余弦定理得cos∠PDE=
PD2+DE2-PE2
2PD•DE
=
3+5-4
2•
3
5
=
2
15
15

故异面直线PD与BC所成的角的余弦值为
2
15
15
点评:本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案