精英家教网 > 高中数学 > 题目详情

【题目】已知边长为的正方形与菱形所在平面互相垂直, 中点.

(1)求证: 平面

(2)若,求四面体的体积.

【答案】(1)证明见解析;(2).

【解析】试题分析:(1)∵四边形是正方形,证得∥平面, ∥平面,即可利用面面平行的判定定理,证得平面,进而得到平面

2中点,连结,证的平面得到为四面体的高,然后利用等体积法求解即可

试题解析:

1)∵四边形ABCD是正方形,∴BC∥AD.∵BC平面ADF,AD平面ADF,

∴BC∥平面ADF.∵四边形ABEF是菱形,

∴BE∥AF

BE平面ADF,AF平面ADF,

∴BE∥平面ADF.∵BC∥平面ADF,BE∥平面ADF,BC∩BE=B,

∴平面BCE∥平面ADF.

∵EM平面BCE,∴EM∥平面ADF.

(2)取AB中点P,连结PE.∵在菱形ABEF中,∠ABE=60°,

∴△AEB为正三角形,∴EP⊥AB.∵AB=2,∴EP=

∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,

∴EP⊥平面ABCD, ∴EP为四面体E﹣ACM的高.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 为参数),以坐标原点为极点, x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为 .直线l过点 .
(1)若直线l与曲线C交于A,B两点,求 的值;
(2)求曲线C的内接矩形的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n分别是先后抛掷一枚骰子所得到的点数,则在先后两次出现的点数中有5的情况下,方程x2+mx+n=0有实根的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某高传染性病毒流行期间,为了建立指标来显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是连续7天每天新增感染人数不超过5,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是(  )

平均数x≤3;标准差s≤2;平均数x≤3且标准差s≤2;平均数x≤3且极差小于或等于2;众数等于1且极差小于或等于4.

A. ①② B. ③④ C. ③④⑤ D. ④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来我国电子商务行业迎来发展的新机遇.2016年618期间,某购物平台的销售业绩高达516亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(Ⅰ)先完成关于商品和服务评价的2×2列联表,再判断能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?
(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:
①求对商品和服务全好评的次数X的分布列;
②求X的数学期望和方差.
附临界值表:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.897

10.828

K2的观测值:k= (其中n=a+b+c+d)
关于商品和服务评价的2×2列联表:

对服务好评

对服务不满意

合计

对商品好评

a=80

对商品不满意

d=10

合计

n=200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:

甲商场:顾客转动如图所示的圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形的圆心角均为,边界忽略不计)即为中奖.

乙商场:从装有2个白球、2个蓝球和2个红球(这些球除颜色外完全相同)的盒子中一次性摸出2,若摸到的是2个相同颜色的球,则为中奖.

试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿千瓦时)与(x﹣0.4)元成反比例.又当x=0.65时,y=0.8.
(1)求y与x之间的函数关系式;
(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年增加20%?[收益=用电量×(实际电价﹣成本价)].

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生的数学测试成绩的频率分布直方图如图所示分数不低于a即为优秀如果优秀的人数为20a的估计值是(  )

A. 130 B. 140 C. 133 D. 137

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在山顶点已测得的俯角分别为,其中为山脚两侧共线的三点,现欲沿直线开通穿山隧道,为了求出隧道的长,至少还需要直接测量出中的哪些线段长?把你上一问指出的需要测量得线段长和已测得的角度作为已知量,写出计算隧道的步骤.

解:

步骤:还需要直接测量得线段为.

步骤:计算线段.

计算步骤:

步骤:计算线段

计算步骤:

步骤:计算线段

计算步骤:

查看答案和解析>>

同步练习册答案