精英家教网 > 高中数学 > 题目详情
18.解不等式:($\frac{1}{2}$)2x-3>8x-2

分析 由指数函数的单调性化指数不等式为一次不等式,则答案可求.

解答 解:由($\frac{1}{2}$)2x-3>8x-2,得2-2x+3>23x-6
即-2x+3>3x-6,解得x$<\frac{9}{5}$.
∴不等式:($\frac{1}{2}$)2x-3>8x-2的解集为(-∞,$\frac{9}{5}$).

点评 本题考查指数不等式的解法,考查了指数函数的单调性,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列说法正确的是(  )
A.两两相交的三条直线确定一个平面B.四边形确定一个平面
C.梯形可以确定一个平面D.圆心和圆上两点确定一个平面

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}中,a1=2,an+1=$\frac{2{a}_{n}}{{a}_{n}+1}$,则数列的通项公式an=$\frac{{2}^{n}}{{2}^{n}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知对一切x,y∈R,f(x-y)=f(x)-(2x-y+1)y都成立,且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知三点A(1,1)、B(5,3)、C(2,5).
(1)求直线AB上的中线l及AC边上的高所在的直线方程;
(2)设M是直线x+y-3=0上任意一点,求|MA|-|MB|取最大值时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.等差数列{an}的前n项和为Sn,且a4-a2=8,a3+a5=26,记Tn=$\frac{{S}_{n}}{{n}^{2}}$,如果存在正整数M,使得对一切正整数n,Tn<M都成立,则M的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设集合A={a,b,c},有下列结论:
(1)a∈A;
(2){a}⊆A;
(3)若集合M={x|x∈A},则M?A;
(4)若M={x|x⊆A},则集合M有8个元素.
其中正确结论的序号是(1)(2)(4)(写出所有你认为正确的结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设满足方程(2alna-b)2+(c2-mc+3+d)2=0的点(a,b),(c,d)的运动轨迹分别为曲线M,N,若在区间[$\frac{1}{e}$,e]内,曲线M,N有两个交点(其中e=2.71828…是自然对数的底数),则实数m的最大值为(  )
A.4B.4+2ln3C.e+2+$\frac{3}{e}$D.$\frac{1}{e}$+3e-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.作出下列函数的图象:
(1)y=2x+2
(2)y=|lgx|;
(3)y=($\frac{1}{2}$)|x|

查看答案和解析>>

同步练习册答案