【题目】双曲线 ﹣ =1(a>0,b>0)的左、右焦点分别为F1 , F2 , P为双曲线上一点,且 =0,△F1PF2的内切圆半径r=2a,则双曲线的离心率e= .
【答案】5
【解析】解:可设P为第一象限的点,
由双曲线的定义可得|PF1|﹣|PF2|=2a,①
=0,可得PF1⊥PF2 ,
由勾股定理可得|PF1|2+|PF2|2=|F1F2|2=4c2 , ②
②﹣①2 , 可得2|PF1||PF2|=4c2﹣4a2=4b2 ,
即有|PF1|+|PF2|= ,
由三角形的面积公式可得 r(|PF1|+|PF2|+|F1F2|)= |PF1||PF2|,
即为2a( +2c)=2b2 ,
即有c+2a= ,两边平方可得
c2+4a2+4ac=c2+b2=c2+c2﹣a2 ,
即c2﹣4ac﹣5a2=0,解得c=5a(c=﹣a舍去),
即有e= =5.
所以答案是:5.
科目:高中数学 来源: 题型:
【题目】某班同学利用寒假进行社会实践活动,对岁的人群随机抽取人进行了一次生活习惯是
否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得
到如下统计表和各年龄段人数频率分布直方图:
(I)补全频率分布直方图并求、、的值;
(II)从年龄段在的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,求选取的名领队中恰有1人年龄在岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,为正方体,给出以下五个结论:
① 平面;
② ⊥平面;
③ 与底面所成角的正切值是;
④ 二面角的正切值是;
⑤ 过点且与异面直线 和 均成70°角的直线有4条.
其中,所有正确结论的序号为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的参数方程为: (φ为参数),直线l的极坐标方程为ρ(cosθ+sinθ)=4.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)若点P在曲线C上,点Q在直线l上,求线段PQ的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线: 与抛物线交于, 两点,记抛物线在, 两点处的切线, 的交点为.
(I)求证: ;
(II)求点的坐标(用, 表示);
(Ⅲ)若,求△的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(0,+∞)上的函数f(x)=a(x+ )﹣|x﹣ |(a∈R).
(1)当a= 时,求f(x)的单调区间;
(2)若f(x)≥ x对任意的x>0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内圆心为的圆的方程为,点是圆上的动点,点是平面内任意一点,若线段的垂直平分线交直线于点,则点的轨迹可能是_________.(请将下列符合条件的序号都填入横线上)
①椭圆;②双曲线;③抛物线;④圆;⑤直线;⑥一个点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若a和b是计算机在区间(0,2)上产生的均匀随机数,则一元二次不等式ax2+4x+4b>0(a>0)的解集不是R的概率为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com