精英家教网 > 高中数学 > 题目详情
14.已知直线l:x-y+m=0(m是常数),曲线C:x|x|-y|y|=1,若l与C有两个不同的交点,则m的取值范围是(-$\sqrt{2}$,0).

分析 做出曲线C:x|x|-y|y|=1的图象,根据条件,即可求出m的取值范围.

解答 解:曲线C:x|x|-y|y|=1,表示的曲线如图所示.
由直线l:x-y+m=0(m是常数),曲线C:x2+y2=1相切,
可得m=-$\sqrt{2}$,
∴m的取值范围是(-$\sqrt{2}$,0).
故答案为:(-$\sqrt{2}$,0).

点评 本题考查曲线与方程,考查数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.直线y=x+b交抛物线$y=\frac{1}{2}{x^2}$于A、B两点,O为抛物线顶点,OA⊥OB,则b的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,值域为[1,+∞)的是(  )
A.y=2x+1B.y=$\sqrt{x-1}$C.y=$\frac{1}{|x|}$+1D.y=x+$\sqrt{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知log0.3(m+1)<log0.3(2m-1),则m的取值范围是(  )
A.(-∞,2)B.$({\frac{1}{2},2})$C.(2,+∞)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知AB、CD为过抛物线y2=2px(p>0)的焦点F的弦,AC交BD于点N,AD交BC于点M.求证:△MNF的外接圆过一个不同于F的定点G,并求点G的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.现用系统抽样方法从已编号(1-60)的60枚新型导弹中,随机抽取6枚进行试验,则所选取的6枚导弹的编号可能是(  )
A.5,10,15,20,25,30B.2,4,8,16,32,48
C.5,15,25,35,45,55D.1,12,34,47,51,60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某公司是一家专做某产品国内外销售的企业,第一批产品在上市40天内全部售完,该公司对第一批产品的销售情况进行了跟踪调查,其调查结果如下:图①中的折线是国内市场的销售情况;图②中的抛物线是国外市场的销售情况;图③中的折线是销售利润与上市时间的关系(国内外市场相同).

(1)求该公司第一批产品日销售利润Q(t)(单位:万元)与上市时间t(单位:天)的关系式,
(2)求该公司第一批新产品上市后,从哪一天开始国内市场日销售利润不小于国外市场?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数f(x)=ax2+ax-2b,其图象过点(2,-4),且f′(1)=-3.
(Ⅰ)求a,b的值;
(Ⅱ)设函数h(x)=xlnx+f(x),求曲线h(x)在x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线l过点P(2,-2),且与直线x+2y-3=0垂直,则直线l的方程为(  )
A.2x+y-2=0B.2x-y-6=0C.x-2y-6=0D.x-2y+5=0

查看答案和解析>>

同步练习册答案