精英家教网 > 高中数学 > 题目详情
19.已知条件p:A={x|x2+ax+1≤0},条件q:B={x|x2-3x+2≤0},若q是p的充分不必要条件,求实数a的取值范围.

分析 解不等式x2-3x+2≤0,得到方程x2+ax+1=0的两根在区间[1,2]外,建立关于a的不等式组解之可得.

解答 解:解不等式可得B={x∈R|x2-3x+2≤0}={x|1≤x≤2},
∵q是p的充分不必要条件,
∴q⇒p,p不能推出q,即B是A的真子集,
可知方程x2+ax+1=0的两根在区间[1,2]外,
解方程得:x1=$\frac{-a-\sqrt{{a}^{2}-4}}{2}$,x2=$\frac{-a+\sqrt{{a}^{2}-4}}{2}$,
∴$\left\{\begin{array}{l}{\frac{-a-\sqrt{{a}^{2}-4}}{2}<1}\\{\frac{-a+\sqrt{{a}^{2}-4}}{2}>2}\end{array}\right.$,解得:a<-$\frac{5}{2}$,
a=-$\frac{5}{2}$时,也符合题意,
故$a≤-\frac{5}{2}$.

点评 本题考查充要条件的判断与利用,得出方程x2+ax+1=0的两根在区间[1,2]外是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.用适合的方法证明下列命题:$\sqrt{a+1}$-$\sqrt{a}$<$\sqrt{a-1}$-$\sqrt{a-2}$(a≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数f(x)=$\frac{ax}{x+1}$(a≠0),若${∫}_{0}^{1}$f(x)dx=1-ln2,则a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.圆台的上、下底面半径分别为1和4,母线长为5,其表面积为42π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,AB=2,AC=1,∠BAC=120°,O点是△ABC的外心,满足p$\overrightarrow{AO}$+λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$=$\overrightarrow 0$,其中p,λ,μ为非零实数,则$\frac{λ+μ}{p}$=-$\frac{13}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.记集合A={(x,y)|x2+y2≤1}和集合A={(x,y)|x+y≤1,x>0,y<0}表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2内的概率为(  )
A.$\frac{1}{2π}$B.$\frac{1}{π}$C.$\frac{2}{π}$D.$\frac{1}{3π}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.过点(1,2),且在两坐标轴上的截距相等的直线有2条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}满足3${\;}^{{a}_{n+1}}$=9•3${\;}^{{a}_{n}}$,(n∈N*)且a2+a4+a6=9,则log${\;}_{\frac{1}{3}}$(a5+a7+a9)=(  )
A.-$\frac{1}{3}$B.3C.-3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.(理)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn-1Dn-2的中点为Dn-1,第n次将纸片折叠,使点A与点Dn-1重合,折痕与AD交于点Pn(n>2),则AP6的长为(  )
A.$\frac{5×3^5}{2^{12}}$B.$\frac{3^6}{5×2^9}$C.$\frac{5×3^6}{2^{14}}$D.$\frac{3^7}{5×2^{11}}$

查看答案和解析>>

同步练习册答案