精英家教网 > 高中数学 > 题目详情
8.已知数列{an}满足3${\;}^{{a}_{n+1}}$=9•3${\;}^{{a}_{n}}$,(n∈N*)且a2+a4+a6=9,则log${\;}_{\frac{1}{3}}$(a5+a7+a9)=(  )
A.-$\frac{1}{3}$B.3C.-3D.$\frac{1}{3}$

分析 利用已知条件判断数列是等差数列,求出公差,利用等差数列的性质化简求解即可.

解答 解:数列{an}满足3${\;}^{{a}_{n+1}}$=9•3${\;}^{{a}_{n}}$,(n∈N*),
可得an+1=an+2,所以数列是等差数列,公差为d=2.
a5+a7+a9=a2+a4+a6+9d=9+18=27.
log${\;}_{\frac{1}{3}}$(a5+a7+a9)=log${\;}_{\frac{1}{3}}$27=-3.
故选:C.

点评 本题考查数列的递推关系式,等差数列的判断以及等差数列的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.以下判断正确的是(  )
A.命题“负数的平方是正数”不是全称命题
B.命题“?x∈N,x3>x”的否定是“?x∈N,x3>x”
C.“a=1”是“函数f(x)=sin 2ax的最小正周期为π”的必要不充分条件
D.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知条件p:A={x|x2+ax+1≤0},条件q:B={x|x2-3x+2≤0},若q是p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若集合A={1,sinθ},B={$\frac{1}{2}$,2},则”θ=$\frac{5π}{6}$”是”A∩B={$\frac{1}{2}$}”的充分不必要.条件.(请在“充要、充分不必要、必要不充分、既不充分也不必要”中选择一个填空).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a1,a2,a3,a4成等比数列,其公比为2,则$\frac{3{a}_{1}+{a}_{2}}{3{a}_{3}+{a}_{4}}$的值为(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于(  )
A.16cm3B.20cm3C.24cm3D.28cm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A,B,C的对边分别是a,b,c,若c-acosB=(2a-b)cosA,则△ABC的形状是等腰或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.有10个零件,其中6个一等品,4个二等品,若从10个零件中任意取3个,那么至少有1个一等品的不同取法有116种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|x=4n+1,n∈Z}B={x|x=4n-3,n∈z},C={x|x=8n+1,n∈z},则A,B,C的关系是(  )
A.C是B的真子集、B是A的真子集B.A是B的真子集、B是C的真子集
C.C是A的真子集、A=BD.A=B=C

查看答案和解析>>

同步练习册答案