精英家教网 > 高中数学 > 题目详情
18.已知集合A={x|x=4n+1,n∈Z}B={x|x=4n-3,n∈z},C={x|x=8n+1,n∈z},则A,B,C的关系是(  )
A.C是B的真子集、B是A的真子集B.A是B的真子集、B是C的真子集
C.C是A的真子集、A=BD.A=B=C

分析 化简B={x|x=4n-3=4(n-1)+1,n∈Z},从而可得A=B;再由题意可排除D,从而得到.

解答 解:∵A={x|x=4n+1,n∈Z},
B={x|x=4n-3=4(n-1)+1,n∈Z},
∴A=B;
故排除选项A,B;
又∵5∈A,5∉C,
∴排除D,
故选C.

点评 本题考查了集合的化简与集合包含关系的判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知数列{an}满足3${\;}^{{a}_{n+1}}$=9•3${\;}^{{a}_{n}}$,(n∈N*)且a2+a4+a6=9,则log${\;}_{\frac{1}{3}}$(a5+a7+a9)=(  )
A.-$\frac{1}{3}$B.3C.-3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.(理)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn-1Dn-2的中点为Dn-1,第n次将纸片折叠,使点A与点Dn-1重合,折痕与AD交于点Pn(n>2),则AP6的长为(  )
A.$\frac{5×3^5}{2^{12}}$B.$\frac{3^6}{5×2^9}$C.$\frac{5×3^6}{2^{14}}$D.$\frac{3^7}{5×2^{11}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.对某文科班50名同学的一次数学成绩进行了统计,全年级文科数学平均分是100分,这个班数学成绩的频率分布直方图如图:(总分150分)从这个班中任取1人,其数学成绩达到或超过年级文科平均分的概率是0.66.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{{\begin{array}{l}{-2+x,x>0}\\{-{x^2}+bx+c,x≤0}\end{array}}$,若f(0)=-2,f(-1)=1,则函数g(x)=f(x)+x的零点的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中既是偶函数,又在区间(0,+∞)上单调递增的是(  )
A.y=-|x|B.y=-x2+1C.y=x3D.y=-$\frac{1}{|x|}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知椭圆Г:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左右焦点分别为F1,F2,过点F1,F2分别作两条平行直线AB,CD交椭圆Г于点A、B、C、D.
(Ⅰ)求证:|AB|=|CD|;
(Ⅱ)求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设复数e=cosθ+isinθ,则复数${e}^{\frac{π}{2i}}$的虚部为(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一质点的运动方程为S(t)=t2+2t,则该质点在t=1时的瞬时速度为4.

查看答案和解析>>

同步练习册答案