【题目】在平面直角坐标系
中,已知点![]()
为平面上的动点,且过点
作
的垂线,垂足为
,满足:![]()
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)在轨迹
上求一点
,使得
到直线
的距离最短,并求出最短距离.
科目:高中数学 来源: 题型:
【题目】如图,正方体
的棱长为1,P为BC的中点,Q为线段
上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是_________(写出所有正确命题的编号)。
![]()
①当
时,S为四边形
②当
时,S为等腰梯形
③当
时,S与
的交点R满足![]()
④当
时,S为六边形
⑤当
时,S的面积为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.
![]()
(1)求证:GH∥平面CDE;
(2)若CD=2,DB=4
,求四棱锥F—ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若方程
有两个小于2的不等实根,求实数a的取值范围;
(2)若不等式
对任意
恒成立,求实数a的取值范围;
(3)若函数
在[0,2]上的最大值为4,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
(
).
(1)证明:直线
过定点;
(2)若直线不经过第四象限,求
的取值范围;
(3)若直线
轴负半轴于
,交
轴正半轴于
,△
的面积为
(
为坐标原点),求
的最小值,并求此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
、
分别为椭圆
:![]()
的左、右两个焦点.
(Ⅰ)若椭圆
上的点
到
、
两点的距离之和等于6,写出椭圆
的方程和焦点坐标;
(Ⅱ)设点
是(1)中所得椭圆上的动点,求线段
的中点M的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com