精英家教网 > 高中数学 > 题目详情
函数f(x)=
log0.5(x-4)
定义域为(  )
A、[5,+∞)
B、(-∞,5]
C、(4,5]
D、(4,+∞)
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数成立的条件,即可得到结论.
解答: 解:要使函数有意义,则log0.5(x-4)≥0,
即0<x-4≤1,则4<x≤5,
即函数的定义域为(4,5],
故选:C
点评:本题主要考查函数定义域的求解,要求熟练掌握常见函数成立的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当m>1时,关于x的不等式x2+(m-1)x-m≥0的解集是(  )
A、{x|x≤1,或x≥-m}
B、{x|1≤x≤-m}
C、{x|x≤-m,或x≥1}
D、{x|-m≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:y=k(x+1)与圆:x2+4x+y2-5=0在第一象限内部分的图象有交点,k的取值范围(  )
A、0≤k≤
5
B、-
5
<k<0
C、0<k<
5
D、0<k<5

查看答案和解析>>

科目:高中数学 来源: 题型:

若x=1满足不等式ax2+2x+1<0,则实数a的取值范围是(  )
A、(-∞,-3)
B、(-3,+∞)
C、(1,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

平面向量
a
b
的夹角为60°,
a
=(
3
,-1),|
b
|=1,则|
a
+2
b
|=(  )
A、
10
B、2
2
C、2
3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)a,b,c是不全相等的正实数,求证:
b+c-a
a
+
a+c-b
b
+
a+b-c
c
>3(综合法)
(2)已知a>0,
1
b
-
1
a
>1,求证
1+a
1
1-b
(分析法)

查看答案和解析>>

科目:高中数学 来源: 题型:

从A、B、C三个男生和D、E两个女生中,每次随机抽取1人,连续抽取2次.
(1)若采用不放回抽取,求取出的2人不全是男生的概率;
(2)若采用有放回抽取,求:
①2次抽到同一人的概率;
②抽取的2人不全是男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为(0,+∞),满足f(a•b)=f(a)+f(b),且对任意x>1,都有f(x)>0.
(1)求证:f(
1
x
)=-f(x);
(2)求证:f(
a
b
)=f(a)-f(b);
(3)求证:函数y=f(x)在(0,+∞)上为增函数;
(4)若f(4)=1,解不等式f(2x+1)-f(1-x)>
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数abc满足a+2b+c=1,a2+b2+c2=1,求证:-
2
3
≤c≤1.

查看答案和解析>>

同步练习册答案