精英家教网 > 高中数学 > 题目详情
已知二次函数f﹙x﹚的二次项系数为a,且方程f﹙x﹚=2x的解分别是-1,3,若方程f(x)=-7a有两个相等的实数根,求f(x)的解析式.
考点:二次函数的性质
专题:函数的性质及应用
分析:由方程f﹙x﹚=2x的解分别是-1,3,可得f(x)-2x=a(x+1)(x-3),由方程f(x)=-7a有两个相等的实数根,则△=0,进而求出a.
解答: 解:∵二次函数f﹙x﹚的二次项系数为a,且方程f﹙x﹚=2x的解分别是-1,3,
∴设f(x)-2x=a(x+1)(x-3),
整理得f(x)=ax2+(2-2a)x-3a
由f(x)=ax2+(2-2a)x-3a=-7a,即ax2+(2-2a)x+4a=O方程有两个相等的实数根,
∴△=(2-2a)2-16a2=0
解得a=-1或a=
1
3

∴f(x)=-x2+4x+3或f(x)=
1
3
x2+
4
3
x-1
点评:本题考查的知识点是二次函数的性质,其中根据已知构造关于a的方程是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|x2-2x<0},B={x|x-1≥0},那么A∩∁UB=(  )
A、{x|0<x<1}
B、{x|x<0}
C、{x|x>2}
D、{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

对抛物线y=2(x-2)2-3与y=-2(x-2)2+4的说法不正确的是(  )
A、抛物线的形状相同
B、抛物线的顶点相同
C、抛物线对称轴相同
D、抛物线的开口方向相反

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一元二次函数y=ax2+bx+c,当x=0时,y=0;当x=30时,y=4;当x=60时,y=0,求该函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y).
(1)求f(0),判断并证明函数f(x)的单调性;
(2)数列{an}满足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*)

①求{an}的通项公式;
②当a>1时,不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(loga+1x-logax+1)对不小于2的正整数恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,四边形ADEF为梯形,AD∥FE,∠AFE=60°,且平面ABCD⊥平面ADEF,AF=FE=AB=
1
2
AD
=2,点G为AC的中点.
(Ⅰ)求证:EG∥平面ABF;
(Ⅱ)求三棱锥B-AEG的体积;
(Ⅲ)试判断平面BAE与平面DCE是否垂直?若垂直,请证明;若不垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,双曲线
x2
a2
-
y2
b2
=1
的两条渐近线为
l1,l2,过椭圆C的右焦点F作直线l,使l⊥l1,又l与l2交于P,设l与椭圆C的两个交点由上至下依次为A、B(如图).
(1)当l1与l2的夹角为60°,且△POF的面积为
3
2
时,求椭圆C的方程;
(2)当
FA
AP
时,求当λ取到最大值时椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0).已知点M(
3
2
2
)在椭圆上,且点M到两焦点距离之和为4.
(1)求椭圆的方程;
(2)设与MO(O为坐标原点)垂直的直线交椭圆于A,B(A,B不重合),求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2,a>0,b>0,且a+b=1,x、y是互不相等的两实数,则af(x)+bf(y)与f(ax+by)的大小关系是
 

查看答案和解析>>

同步练习册答案