精英家教网 > 高中数学 > 题目详情
已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,双曲线
x2
a2
-
y2
b2
=1
的两条渐近线为
l1,l2,过椭圆C的右焦点F作直线l,使l⊥l1,又l与l2交于P,设l与椭圆C的两个交点由上至下依次为A、B(如图).
(1)当l1与l2的夹角为60°,且△POF的面积为
3
2
时,求椭圆C的方程;
(2)当
FA
AP
时,求当λ取到最大值时椭圆的离心率.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)l1的斜率为-
b
a
,l2的斜率为
b
a
,由l1与l2的夹角为60°,利用夹角公式,可得a=
3
b
,利用△POF的面积为
3
2
,可得ab=
3
,从而可求a,b,即可求椭圆C的方程;
(2)当
FA
AP
时,求出A的坐标,代入椭圆方程,即可求当λ取到最大值时椭圆的离心率.
解答: 解:(1)l1的斜率为-
b
a
,l2的斜率为
b
a
,由l1与l2的夹角为60°,
|
b
a
+
b
a
1-(
b
a
)
2
|=
3
,整理,得a=
3
b
.           ①
y=
b
a
x
y=
a
b
(x-c).
,得P(
a2
c
ab
c
)

S△POF=
3
2
,得
1
2
•c•
ab
c
=
3
2

ab=
3
.               ②
由①②,解得a=
3
,b=1.
∴椭圆C方程为:
x2
3
+y2=1

(2)由P(
a2
c
ab
c
)
,F(c,0)及
FA
AP
,得A(
c+
λa2
c
1+λ
λab
c
1+λ
)

将A点坐标代入椭圆方程,得
(c+
λa2
c
)
2
(1+λ)2
+
(
λab
c
)
2
(1+λ)2
=1

整理,得λ2=
e2(1-e2)
2-e2
=-[(2-e2)+
2
2-e2
]+3≤3-2
2

∴λ的最大值为
2
-1
,此时e=
2-
2
点评:本题考查椭圆的标准方程,考查三角形面积的计算,考查向量知识的运用,考查基本不等式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图给出的计算1+
1
2
+
1
3
+…+
1
2014
的值的一个程序框图,则判断框内应填入的条件是(  )
A、i≤2014
B、i>2014
C、i≤2013
D、i>2013

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的方程为E:
x2
a2
+
y2
b2
=1(a>b>0)
,斜率为1的直线不经过原点O,而且与椭圆相交于A,B两点,M为线段AB的中点.
(1)问:直线OM与AB能否垂直?若能,求a,b之间满足的关系式;若不能,说明理由;
(2)已知M为ON的中点,且N点在椭圆上.若∠OAN=
π
2
,求a,b之间满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f﹙x﹚的二次项系数为a,且方程f﹙x﹚=2x的解分别是-1,3,若方程f(x)=-7a有两个相等的实数根,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),经过点(3,-2)与向量(-1,1)平行的直线l交椭圆C于A,B两点,交x轴于M点,又
AM
=2
MB

(Ⅰ)求椭圆C长轴长的取值范围;
(Ⅱ)若|
AB
|=
3
2
2
,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,过左焦点F(-
3
,0)且斜率为k的直线交椭圆E于A,B两点,线段AB的中点为M,直线l:x+4ky=0交椭圆E于C,D两点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)求证:点M在直线l上;
(Ⅲ)是否存在实数k,使得三角形BDM的面积是三角形ACM的3倍?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,右焦点为F(1,0).
(Ⅰ)求此椭圆的方程;
(Ⅱ)若过点F且倾斜角为
π
4
的直线与此椭圆相交于A,B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

向面积为9的△ABC内任投一点P,求△PBC的面积小于3的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(
x
-1)9
的展开式中任取一项,设所取项含x的次数为非负整数的项的概率为P,则
1
0
xPdx等于
 

查看答案和解析>>

同步练习册答案