精英家教网 > 高中数学 > 题目详情
20.在如图所示三棱锥D-ABC中,AD⊥DC,AB=4,AD=CD=2,∠BAC=45°,平面ACD⊥平面ABC,E,F分别在BD,BC上,且BD=3BE,BC=2BF.
(1)求证:BC⊥AD;
(2)求平面AEF将三棱锥D-ABC分成两部分的体积之比.

分析 (1)由已知求解直角三角形可得AC⊥BC.再由平面ACD⊥平面ABC,结合面面垂直的性质得BC⊥平面ACD,从而得AD⊥BC;
(2)取线段AC的中点O,连接DO,由AD=CD,得DO⊥AC.再由平面ACD⊥平面ABC,可得DO⊥平面ABC,然后求出三棱锥D-ABC和A-EBF的体积,利用等积法作差求得VA-EFCD,则答案可求.

解答 (1)证明:在Rt△ADC中,AD=DC=2,AD⊥DC,∴$AC=2\sqrt{2}$,
在△ABC中,∵∠BAC=45°,AB=4,
∴BC2=AC2+AB2+2AC•AB•cos45°=${(2\sqrt{2})^2}+{4^2}-2×2\sqrt{2}×4×\frac{{\sqrt{2}}}{2}=8$,
可得:$AC=BC=2\sqrt{2}$,∴AC2+BC2=AB2.则AC⊥BC.
又∵平面ACD⊥平面ABC,平面ACD∩平面ABC=AC,
∴BC⊥平面ACD,得AD⊥BC;
(2)解:取线段AC的中点O,连接DO,
∵AD=CD,∴DO⊥AC.
又∵平面ACD⊥平面ABC,
平面ACD∩平面ABC=AC,DO?平面ACD,∴DO⊥平面ABC,
$DO=\sqrt{2}$,${S_{△ABC}}=\frac{1}{2}AC•BC=\frac{1}{2}×2\sqrt{2}×2\sqrt{2}=4$,
∴VD-ABC=$\frac{1}{3}{S_{△ABC}}•DO$=$\frac{1}{3}×\frac{1}{2}×2\sqrt{2}×2\sqrt{2}$=$\frac{{4\sqrt{2}}}{3}$,
过点E作EG∥DO交BO于G,∴EG⊥平面ABC,
∵BD=3BE,∴$EG=\frac{1}{3}DO=\frac{{\sqrt{2}}}{3}$,
∵BC=2BF,∴$BF=\frac{1}{2}BC=\sqrt{2}$,
VA-EBF═$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×2\sqrt{2}×\frac{{\sqrt{2}}}{3}$=$\frac{{2\sqrt{2}}}{9}$,
∴VA-EFCD=VD-ABC-VE-ABF=$\frac{{10\sqrt{2}}}{9}$,
∴平面AEF将三棱锥D-ABC分成的两部分的体积之比$\frac{{10\sqrt{2}}}{9}:\frac{{2\sqrt{2}}}{9}=5:1$.

点评 本题考查空间中直线与直线的位置关系,考查了线面垂直的判定,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.直线l:3x-4y+5=0被圆x2+y2=r2截得的弦长为2$\sqrt{3}$,则半径r的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线(3k-1)x+(k+2)y-k=0,则当k变化时,所有直线都通过定点(  )
A.(0,0)B.($\frac{1}{7}$,$\frac{2}{7}$)C.($\frac{2}{7}$,$\frac{1}{7}$)D.($\frac{1}{7}$,$\frac{1}{14}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.关于下列命题,正确的个数是(  )
(1)若点(2,1)在圆x2+y2+kx+2y+k2-15=0外,则k>2或k<-4
(2)已知圆M:(x+cosθ)2+(y-sinθ)2=1,直线y=kx,则直线与圆恒相切
(3)已知点P是直线2x+y+4=0上一动点,PA、PB是圆C:x2+y2-2y=0的两条切线,A、B是切点,则四边形PACB的最小面积是为2
(4)设直线系M:xcosθ+ysinθ=2+2cosθ,M中的直线所能围成的正三角形面积都等于12$\sqrt{3}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知如图1,点E,F,G分别是正方体ABCD-A1B1C1D1的棱AA1,CC1,DD1的中点,点M,N,Q,P分别在线段DF,AG,BE,C1B1上,以M,N,Q,P为顶点的三棱锥P-MNQ的俯视图在下列四个图(图2)中有可能的情形有(  )种.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1524石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为(  )
A.1365石B.338石C.168石D.134石

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某制造厂商10月份生产了一批乒乓球,从中随机抽取n个进行检查,测得每个球的直径(单位:mm),将数据进行分组,得到如表频率分布表:
 分组 频数 频率
[39.95,39.97) 6 P1
[39.97,39.99) 12 0.20
[39.99,40.01) a 0.50
[40.01,40.03) b P2
 合计 n 1.00
(1)求a、b、n及P1、P2的值,并画出频率分布直方图(结果保留两位小数);
(2)已知标准乒乓球的直径为40.00mm,直径误差不超过0.01mm的为五星乒乓球,若这批乒乓球共有10000个,试估计其中五星乒乓球的数目;
(3)统计方法中,同一组数据常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00)作为代表,估计这批乒乓球直径的平均值和中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是(  )
A.$y={x^{\frac{1}{2}}}$B.y=x2C.y=-x|x|D.y=x-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$ ( t为参数).以原点为极点,x轴正半轴为极轴 建立极坐标系,圆C的方程为 ρ=2$\sqrt{3}$sinθ.
(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)若点P的直角坐标为(1,0),圆C与直线l交于A,B两点,求|PA|+|PB|的值.

查看答案和解析>>

同步练习册答案