分析 (Ⅰ)由足$P{F}_{1}+P{F}_{2}=E{F}_{2}=4\sqrt{3}$,且4$\sqrt{3}$>丨F1F2丨,则点P的轨迹为以F1、F2为焦点,长轴为4$\sqrt{3}$的椭圆,即可求得椭圆方程;
(Ⅱ)(i)设直线l的方程,代入椭圆方程,由$\frac{1}{丨MA{丨}^{2}}$+$\frac{1}{丨MB{丨}^{2}}$=$\frac{({y}_{1}+{y}_{2})^{2}-2{y}_{1}{y}_{2}}{({m}^{2}+1)({y}_{1}{y}_{2})^{2}}$,利用韦达定理可知2t2+24=72-6t2,即可求得t的值,$\frac{1}{丨MA{丨}^{2}}$+$\frac{1}{丨MB{丨}^{2}}$=1;
(ii)利用弦长公式,求得丨AB丨,利用点到直线距离公式,换元,即可求得△ABQ面积的最大值.
解答 解:(Ⅰ)∵圆的方程为(x+2$\sqrt{2}$)2+y2=48的圆心F1为(-2$\sqrt{2}$,0),半径为4$\sqrt{3}$.
依题意点P满足$P{F}_{1}+P{F}_{2}=E{F}_{2}=4\sqrt{3}$,且4$\sqrt{3}$>丨F1F2丨,
故点P的轨迹为以F1、F2为焦点,长轴为4$\sqrt{3}$的椭圆
∴曲线C的方程:$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}=1$.![]()
![]()
(Ⅱ)(i)设M(t,0),设直线l的方程:x=my+t,A(x1,y1),B(x2,y2),
联立$\left\{\begin{array}{l}{x=my+t}\\{{x}^{2}+3{y}^{2}=12}\end{array}\right.$,整理得:(m2+3)y2+2mty+t2-12=0,
y1+y2=-$\frac{2mt}{{m}^{2}+3}$,y1y2=$\frac{{t}^{2}-12}{{m}^{2}+3}$,
$\frac{1}{丨MA{丨}^{2}}$=$\frac{1}{({m}^{2}+1){y}_{1}^{2}}$,$\frac{1}{丨MB{丨}^{2}}$=$\frac{1}{({m}^{2}+1){y}_{2}^{2}}$,
则$\frac{1}{丨MA{丨}^{2}}$+$\frac{1}{丨MB{丨}^{2}}$=$\frac{({y}_{1}+{y}_{2})^{2}-2{y}_{1}{y}_{2}}{({m}^{2}+1)({y}_{1}{y}_{2})^{2}}$=$\frac{(2{t}^{2}+24){m}^{2}+72-6{t}^{2}}{({t}^{2}-12){m}^{2}+({t}^{2}-12)^{2}}$,
当2t2+24=72-6t2,即t2=6时,$\frac{1}{丨MA{丨}^{2}}$+$\frac{1}{丨MB{丨}^{2}}$=1,
此时M的坐标为(±$\sqrt{6}$,0),
综上,存在点M(±$\sqrt{6}$,0),使得$\frac{1}{丨MA{丨}^{2}}$+$\frac{1}{丨MB{丨}^{2}}$=1,
(ii)由(i)可知:t2=6,则丨AB丨=$\sqrt{1+{m}^{2}}$丨y1-y2丨=$\sqrt{1+{m}^{2}}$$\frac{2\sqrt{6}\sqrt{2{m}^{2}+3}}{{m}^{2}+3}$,
原点O直线AB的距离d=$\frac{\sqrt{6}}{\sqrt{1+{m}^{2}}}$,S△ABQ=4×$\frac{1}{2}$×$\frac{丨AB丨}{2}$=$\frac{12\sqrt{2{m}^{2}+3}}{{m}^{2}+3}$,
令$\sqrt{2{m}^{2}+3}$=μ∈[$\sqrt{3}$,+∞),则S△ABQ=$\frac{24μ}{{u}^{2}+3}$=$\frac{24}{μ+\frac{3}{μ}}$≤$\frac{24}{2\sqrt{3}}$=4$\sqrt{3}$,
当且仅当t=$\sqrt{3}$,即m=0取最大值,
∴△ABQ面积的最大值4$\sqrt{3}$.
点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,弦长公式,考查换元法的应用,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 序号 | x | y | x2 | xy |
| 1 | 1 | 2 | 1 | 2 |
| 2 | 2 | 3 | 4 | 6 |
| 3 | 3 | 4 | 9 | 12 |
| 4 | 4 | 4 | 16 | 16 |
| 5 | 5 | 5 | 25 | 25 |
| ∑ | 15 | 18 | 55 | 61 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com