精英家教网 > 高中数学 > 题目详情
8.平面直角坐标系xOy中,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,且点$(\sqrt{3},\frac{1}{2})$在椭圆C上.椭圆C的左顶点为A.
(1)求椭圆C的方程;
(2)过点A作直线l与椭圆C交于另一点B.若直线l交y轴于点C,且OC=BC,求直线l的斜率.

分析 (1)利用抛物线的离心率求得$\frac{{b}^{2}}{{a}^{2}}=\frac{1}{4}$,将($\sqrt{3}$,$\frac{1}{2}$)代入椭圆方程,即可求得a和b的值.
(2)依题意,直线l的斜率k存在,设直线l的方程为:y=k(x+2),由$\left\{\begin{array}{l}{y=k(x+2)}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$得(1+4k2)x2+16k2x+16k2-4=0.利用韦达定理、弦长公式表达且OC=BC,即可解得斜率.

解答 解:(1)由已知得$\left\{\begin{array}{l}{1-\frac{{b}^{2}}{{a}^{2}}=(\frac{\sqrt{3}}{2})^{2}}\\{\frac{3}{{a}^{2}}+\frac{\frac{1}{4}}{{b}^{2}}=1}\end{array}\right.$解得$\left\{\begin{array}{l}{{a}^{2}=4}\\{{b}^{2}=1}\end{array}\right.$,
所以椭圆C的方程为:$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(2)由已知得直线l的斜率k存在,故设直线l的方程为:y=k(x+2)
由$\left\{\begin{array}{l}{y=k(x+2)}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,整理得(1+4k2)x2+16k2x+16k2-4=0.
((△=(16k22-4(1+4k2)(16k2-4)=16>0恒成立.
令B(xB,yB),C(0,yC),由-2xB=$\frac{16{k}^{2}-4}{1+4{k}^{2}}$,得${x}_{B}=\frac{2-8{k}^{2}}{1+4{k}^{2}}$
可得C(0,2k),OC=|2k|,|BC|=$\sqrt{1+{k}^{2}}$|xB-0|=$\sqrt{1+{k}^{2}}$|$\frac{2-8{k}^{2}}{1+4{k}^{2}}$|
且OC=BC,∴|2k|=$\sqrt{1+{k}^{2}}$|$\frac{2-8{k}^{2}}{1+4{k}^{2}}$|,解得k=$±\frac{\sqrt{2}}{4}$
∴直线l的斜率为$±\frac{\sqrt{2}}{4}$

点评 本题考查了椭圆的方程,直线与椭圆的位置关系,计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知sin($\frac{π}{5}$-α)=$\frac{1}{4}$,则cos(2α+$\frac{3π}{5}$)=(  )
A.-$\frac{7}{8}$B.$\frac{7}{8}$C.$\frac{1}{8}$D.-$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>0且a≠1,x∈(0,+∞),命题p:若a>1且x>1,则logax>0,在命题p、p的逆命题、p的否命题、p的逆否命题、¬p这5个命题中,真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若下列关于x的方程x2+4ax-4a+3=0(a为常数),x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,则实数a的取值范围是(  )
A.$({-\frac{3}{2},-1})$B.$({-∞,-\frac{3}{2}}]∪[{-1,+∞})$C.(-2,0)D.$({-∞,-\frac{3}{2}}]∪[{0,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在正方体ABCD-A1B1C1D1中,点E1、F1分别是A1B1、C1D1的四等分点,求BE1与DF1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,设圆的方程为(x+2$\sqrt{2}$)2+y2=48,F1是圆心,F2(2$\sqrt{2}$,0)是圆内一点,E为圆周上任一点,线EF2的垂直平分线EF1的连线交于P点,设动点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设直线l(与x轴不重合)与曲线C交于A、B两点,与x轴交于点M.
      (i)是否存在定点M,使得$\frac{1}{|MA{|}^{2}}$+$\frac{1}{|MB{|}^{2}}$为定值,若存在,求出点M坐标及定值;若不存在,请说明理由;
      (ii)在满足(i)的条件下,连接并延长AO交曲线C于点Q,试求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,点P到两点(0,-$\sqrt{3}$),(0,$\sqrt{3}$)的距离之和等于4.
(1)求点P的轨迹方程;
(2)设点P的轨迹为C,直线y=kx+1与C交于A,B两点,若$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在面积为S的正方形ABCD内任意投一点M,则点M到四边的距离均大于$\frac{{2\sqrt{S}}}{5}$的概率为(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{25}$D.$\frac{4}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax.
(1)若a=4,求y=f(x)的单调区间;
(2)若函数f(x)在x=3处取得极值,求曲线y=f(x)在点(0,f(0))处的切线方程.

查看答案和解析>>

同步练习册答案