精英家教网 > 高中数学 > 题目详情
17.在面积为S的正方形ABCD内任意投一点M,则点M到四边的距离均大于$\frac{{2\sqrt{S}}}{5}$的概率为(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{25}$D.$\frac{4}{25}$

分析 由正方形面积求得边长,得到满足到四边的距离均大于$\frac{{2\sqrt{S}}}{5}$的点在以$\frac{\sqrt{S}}{5}$为边长的正方形区域内,求出点M所在区域面积,由面积比得答案.

解答 解:由正方形面积为S,可得边长为$\sqrt{S}$,
则满足到四边的距离均大于$\frac{{2\sqrt{S}}}{5}$的点在以$\frac{\sqrt{S}}{5}$为边长的正方形区域内.
所占区域面积为$(\frac{\sqrt{S}}{5})^{2}=\frac{S}{25}$.
由测度比为面积比可得点M到四边的距离均大于$\frac{{2\sqrt{S}}}{5}$的概率为$\frac{\frac{S}{25}}{S}=\frac{1}{25}$.
故选:C.

点评 本题考查几何概型,正确求出点M所在区域面积是关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,过点A(6,4)作曲线f(x)=$\sqrt{4x-8}$的切线l.
(1)求切线l的方程;
(2)求切线l、x轴及曲线f(x)=$\sqrt{4x-8}$所围成的封闭图形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.平面直角坐标系xOy中,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,且点$(\sqrt{3},\frac{1}{2})$在椭圆C上.椭圆C的左顶点为A.
(1)求椭圆C的方程;
(2)过点A作直线l与椭圆C交于另一点B.若直线l交y轴于点C,且OC=BC,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=ex-ax-1
(1)若函数f(x)在R上单调递增,求α的取值范围;
(2)当α>0时,设函数f(x)的最小值为g(a),求证:g(a)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中,在其定义域内既是奇函数又是增函数的是(  )
A.y=-$\frac{1}{x}$B.y=|x|C.y=x${\;}^{\frac{1}{3}}$D.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=lg($\sqrt{1+{x}^{2}}$-x)-1,则f(ln2)+f(ln$\frac{1}{2}$)=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C所对的边分别为a,b,c.$\overrightarrow m=(\sqrt{3}a{,_{\;}}b)$,$\overrightarrow n=(cosB,sinA)$
(Ⅰ)若$\overrightarrow m•\overrightarrow n=\sqrt{3}$c,求角A;
(Ⅱ)若向量$\overrightarrow m$与向量$\overrightarrow g=(1,1)$共线,c=2,且△ABC的面积为$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),右焦点为F(c,0),A(0,2),且|AF|=$\sqrt{7}$,椭圆C的离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的标准方程;
(2)设直线l的方程为y=kx+m,当直线l与椭圆C有唯一公共点M时,作OH⊥l于H(O为坐标原点),若|MH|=$\frac{3}{5}$|OM|,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知单位向量$\vec a,\vec b$,若向量$2\vec a-\vec b$与$\vec b$垂直,则向量$\vec a$与$\vec b$的夹角为60°

查看答案和解析>>

同步练习册答案