精英家教网 > 高中数学 > 题目详情
9.在△ABC中,角A,B,C所对的边分别为a,b,c.$\overrightarrow m=(\sqrt{3}a{,_{\;}}b)$,$\overrightarrow n=(cosB,sinA)$
(Ⅰ)若$\overrightarrow m•\overrightarrow n=\sqrt{3}$c,求角A;
(Ⅱ)若向量$\overrightarrow m$与向量$\overrightarrow g=(1,1)$共线,c=2,且△ABC的面积为$\sqrt{3}$,求a的值.

分析 (Ⅰ)利用$\overrightarrow m•\overrightarrow n=\sqrt{3}$c,结合正弦定理以及两角和与差的三角函数化简方程,转化求角A;
(Ⅱ)利用向量共线,三角形的面积,转化求解a即可.

解答 解:(Ⅰ)由$\overrightarrow m•\overrightarrow n=\sqrt{3}c$,即$\sqrt{3}acosB+bsinA=\sqrt{3}c$,
由正弦定理可得$\sqrt{3}sinAcosB+sinBsinA=\sqrt{3}sinC$=$\sqrt{3}sin(A+B)$.
即$\sqrt{3}sinAcosB+sinBsinA=\sqrt{3}sinAcosB+\sqrt{3}cosAsinB$.
即$sinBsinA=\sqrt{3}cosAsinB$,∴$sinA=\sqrt{3}cosA$,
∴$tanA=\sqrt{3}$,∴A=60°.
(Ⅱ)由${S_{△ABC}}=\frac{1}{2}absinC=\sqrt{3}$得:a2sinC=2①
由$4{a^2}-2\sqrt{3}{a^2}cosC=4$得:${a^2}(2-\sqrt{3}cosC)=2$②
由①,②得:$sinC=2-\sqrt{3}cosC$,即$sin(C+\frac{π}{3})=1$,
∴$C=\frac{π}{6}$,${a^2}=\frac{2}{sinC}=4$.
∴a=2.

点评 本题考查三角形的解法,正弦定理以及两角和与差的三角函数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知a>0且a≠1,x∈(0,+∞),命题p:若a>1且x>1,则logax>0,在命题p、p的逆命题、p的否命题、p的逆否命题、¬p这5个命题中,真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,点P到两点(0,-$\sqrt{3}$),(0,$\sqrt{3}$)的距离之和等于4.
(1)求点P的轨迹方程;
(2)设点P的轨迹为C,直线y=kx+1与C交于A,B两点,若$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在面积为S的正方形ABCD内任意投一点M,则点M到四边的距离均大于$\frac{{2\sqrt{S}}}{5}$的概率为(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{25}$D.$\frac{4}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过抛物线y2=2px(p>0)的焦点F的直线与双曲线x2-$\frac{{y}^{2}}{3}$=1的一条渐进线平行,并交抛物线于A、B两点,若|AF|>|BF|,且|AF|=2,则抛物线的方程为y2=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线(2m-1)x-(m+3)y-(m-11)=0恒过定点
(1)求此定点坐标.
(2)若直线的图象经过一、三、四象限,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f1(x)=cosx,f2(x)=coswx(w>0),f2(x)的图象可以看作是把f1(x)图象中的点的横坐标缩为原来的$\frac{1}{3}$(纵坐标不变)而得到的,则w=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax.
(1)若a=4,求y=f(x)的单调区间;
(2)若函数f(x)在x=3处取得极值,求曲线y=f(x)在点(0,f(0))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点P在椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,以P为圆心的圆与x轴相切于椭圆的右焦点F2,且$\overrightarrow{OP}$•$\overrightarrow{O{F}_{2}}$=2,tan∠OPF2=$\sqrt{2}$,其中O为坐标原点.
(1)求椭圆C的方程;
(2)已知点M(-1,0),设Q是椭圆C上的一点,过Q、M两点的直线l交y轴于点N,若$\overrightarrow{NQ}$=2$\overrightarrow{QM}$,求直线l的方程;
(3)作直线l1与椭圆D:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1交于不同的两点S,T,其中S点的坐标为(-2,0),若点G(0,t)是线段ST垂直平分线上一点,且满足$\overrightarrow{GS}$•$\overrightarrow{GT}$=4,求实数t的值.

查看答案和解析>>

同步练习册答案