精英家教网 > 高中数学 > 题目详情
18.已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax.
(1)若a=4,求y=f(x)的单调区间;
(2)若函数f(x)在x=3处取得极值,求曲线y=f(x)在点(0,f(0))处的切线方程.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)求出函数的导数,根据3是函数y=f(x)的极值点,得到关于a的方程,解出a,求出f(x)的解析式,从而求出切线方程即可.

解答 解:(1)a=4时,f(x)=2x3-15x2+24x,
f′(x)=6x2-30x+24=6(x2-5x+4)(x-4)(x-1),
令f′(x)>0,解得:x>1或x<4,
令f′(x)<0,解得:1<x<4,
故f(x)在(-∞,1)递增,在(1,4)递减,在(4,+∞)递增;
(2)∵f(x)=2x3-3(a+1)x2+6ax,
∴f′(x)=6x2-6(a+1)x+6a,
∵3是函数y=f(x)的极值点,
∴f′(3)=0,即6×32-6(a+1)×3+6a=0,
解得:a=3,
∴f(x)=2x3-12x2+18x,
f′(x)=6x2-24x+18,
则f(0)=0,f′(0)=18,
∴y=f(x)在(0,f(0))处的切线方程是:y=18x;

点评 本题考查了函数的单调性、最值问题,考查导数的意义以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.平面直角坐标系xOy中,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,且点$(\sqrt{3},\frac{1}{2})$在椭圆C上.椭圆C的左顶点为A.
(1)求椭圆C的方程;
(2)过点A作直线l与椭圆C交于另一点B.若直线l交y轴于点C,且OC=BC,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C所对的边分别为a,b,c.$\overrightarrow m=(\sqrt{3}a{,_{\;}}b)$,$\overrightarrow n=(cosB,sinA)$
(Ⅰ)若$\overrightarrow m•\overrightarrow n=\sqrt{3}$c,求角A;
(Ⅱ)若向量$\overrightarrow m$与向量$\overrightarrow g=(1,1)$共线,c=2,且△ABC的面积为$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),右焦点为F(c,0),A(0,2),且|AF|=$\sqrt{7}$,椭圆C的离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的标准方程;
(2)设直线l的方程为y=kx+m,当直线l与椭圆C有唯一公共点M时,作OH⊥l于H(O为坐标原点),若|MH|=$\frac{3}{5}$|OM|,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)>2;
(2)若函数f(x)≥m恒成立,求m的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一盒中放有的黑球和白球,其中黑球4个,白球5个.
(Ⅰ)从盒中同时摸出两个球,求两球颜色恰好相同的概率.
(Ⅱ)从盒中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.
(Ⅲ)从盒中不放回的每次摸一球,若取到白球则停止摸球,求取到第三次时停止摸球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}是等差数列,且满足:a1+a2+a3=6,a5=5;数列{bn}满足:bn-bn-1=${2^{{a_{n-1}}}}$(n≥2,n∈N*),b1=2.
(Ⅰ)求an和bn
(Ⅱ)记数列cn=anbn(n∈N*),若{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知单位向量$\vec a,\vec b$,若向量$2\vec a-\vec b$与$\vec b$垂直,则向量$\vec a$与$\vec b$的夹角为60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列$\sqrt{3}$,$\sqrt{7}$,$\sqrt{11}$,$\sqrt{15}$,…的一个通项公式是(  )
A.an=$\sqrt{4n+1}$B.an=$\sqrt{4n-1}$C.an=$\sqrt{2n+1}$D.an=$\sqrt{2n+3}$

查看答案和解析>>

同步练习册答案