精英家教网 > 高中数学 > 题目详情
8.数列$\sqrt{3}$,$\sqrt{7}$,$\sqrt{11}$,$\sqrt{15}$,…的一个通项公式是(  )
A.an=$\sqrt{4n+1}$B.an=$\sqrt{4n-1}$C.an=$\sqrt{2n+1}$D.an=$\sqrt{2n+3}$

分析 根据数列项的规律即可得到结论.

解答 解:因为数列3,7,11,15…的一个通项公式为4n-1,
故数列$\sqrt{3}$,$\sqrt{7}$,$\sqrt{11}$,$\sqrt{15}$,…的一个通项公式是an=$\sqrt{4n-1}$,
故选:B

点评 本题主要考查数列通项公式的求法,利用条件找到项的规律是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax.
(1)若a=4,求y=f(x)的单调区间;
(2)若函数f(x)在x=3处取得极值,求曲线y=f(x)在点(0,f(0))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点P在椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,以P为圆心的圆与x轴相切于椭圆的右焦点F2,且$\overrightarrow{OP}$•$\overrightarrow{O{F}_{2}}$=2,tan∠OPF2=$\sqrt{2}$,其中O为坐标原点.
(1)求椭圆C的方程;
(2)已知点M(-1,0),设Q是椭圆C上的一点,过Q、M两点的直线l交y轴于点N,若$\overrightarrow{NQ}$=2$\overrightarrow{QM}$,求直线l的方程;
(3)作直线l1与椭圆D:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1交于不同的两点S,T,其中S点的坐标为(-2,0),若点G(0,t)是线段ST垂直平分线上一点,且满足$\overrightarrow{GS}$•$\overrightarrow{GT}$=4,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知某中学联盟举行了一次“盟校质量调研考试”活动,为了解本次考试学生的某学科成绩情况,从中抽取了部分学生的分数(满分100分),得分取整数,抽取得学生的分数均在[50,100]内作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出的频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在[50,60),[90,100]的数据).

(1)求样本容量n和频率分布直方图中x,y的值;
(2)在选取的样本中,从成绩在80分以上(含80分)的学生中随机抽取2名学生参加“升级学科基础知识竞赛”,求所抽取的2名学生中恰有1人得分在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$y=sin(2x-\frac{π}{3})$的图象经过下列平移,所得图象对应的函数为偶函数的是(  )
A.向左平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{5π}{12}$个单位D.向右平移$\frac{5π}{12}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆的中心在原点,焦点在y轴上且长轴长为4,短轴长为2,直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=m+2t}\end{array}\right.$(t为参数).当m为何值时,直线l被椭圆截得的弦长为$\sqrt{6}$?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若随机变量ξ的分布列如表所示,则p1等于(  )
ξ-124
P$\frac{1}{5}$$\frac{2}{3}$p1
A.0B.$\frac{2}{15}$C.$\frac{1}{15}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在二项式(1-2x)9的展开式中,
(1)求展开式的第四项;
(2)求展开式的常数项;
(3)求展开式中各项的系数和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l:y=x+m与函数f(x)=ln(x+2)的图象相切于点P.
(1)求实数m的值;
(2)证明除切点P外,直线l总在函数f(x)的图象的上方;
(3)设a,b,c是两两不相等的正实数,且a,b,c成等比数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.

查看答案和解析>>

同步练习册答案