精英家教网 > 高中数学 > 题目详情
20.若随机变量ξ的分布列如表所示,则p1等于(  )
ξ-124
P$\frac{1}{5}$$\frac{2}{3}$p1
A.0B.$\frac{2}{15}$C.$\frac{1}{15}$D.1

分析 由随机变量ξ的分布列的性质能求出p1

解答 解:由随机变量ξ的分布列,知:
$\frac{1}{5}+\frac{2}{3}+{p}_{1}$=1,
解得p1=$\frac{2}{15}$.
故选:B.

点评 本题考查概率的求法,考查离散型随机变量的分布列的性质,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列{an}是等差数列,且满足:a1+a2+a3=6,a5=5;数列{bn}满足:bn-bn-1=${2^{{a_{n-1}}}}$(n≥2,n∈N*),b1=2.
(Ⅰ)求an和bn
(Ⅱ)记数列cn=anbn(n∈N*),若{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将f(x)=|x-1|写成分段函数形式为f(x)=$\left\{\begin{array}{l}{x-1,x≥1}\\{1-x,x<1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列$\sqrt{3}$,$\sqrt{7}$,$\sqrt{11}$,$\sqrt{15}$,…的一个通项公式是(  )
A.an=$\sqrt{4n+1}$B.an=$\sqrt{4n-1}$C.an=$\sqrt{2n+1}$D.an=$\sqrt{2n+3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.正方形ABCD,沿对角线BD折成直二面角A-BD-C,则折后的异面直线AB与CD所成的角的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若(1+2x)100=a0+a1(x-1)+a2(x-1)2+…+a100(x-1)100,则a1+a2+…+a100=5100-3100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.边长为2的正三角形ABC内(包括三边)有点P,$\overrightarrow{PB}$$•\overrightarrow{PC}$=1,则$\overrightarrow{AP}$•$\overrightarrow{AB}$的范围是(  )
A.[2,4]B.[$\frac{3-\sqrt{5}}{2}$,4]C.[3-$\sqrt{5}$,2]D.[$\frac{3-\sqrt{5}}{2}$,3-$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知曲线y=axcosx在$({\frac{π}{2},0})$处的切线的斜率为$\frac{1}{2}$,则实数a的值为(  )
A.$\frac{π}{2}$B.-$\frac{π}{2}$C.$\frac{1}{π}$D.$-\frac{1}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\left\{{\begin{array}{l}{|lnx|,(0<x≤e)}\\{2-lnx,(x>e)}\end{array}}$,若a,b,c互不相等,且f(a)=f(b)=f(c),求a+b+c的取值范围.

查看答案和解析>>

同步练习册答案