精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{{\begin{array}{l}{|lnx|,(0<x≤e)}\\{2-lnx,(x>e)}\end{array}}$,若a,b,c互不相等,且f(a)=f(b)=f(c),求a+b+c的取值范围.

分析 根据f(x)的函数图象判断a,b,c的范围,利用f(a)=f(b)=f(c)得出a,b,c的关系,得出a+b+c关于a的函数,求出此函数的值域即可.

解答 解:作出函数f(x)的大致图象,如图所示:

不妨设a<b<c,则0<a<1,1<b<e.
∵f(a)=f(b),即-lna=lnb,∴ab=1,即b=$\frac{1}{a}$,
同理-lna=2-lnc,∴$\frac{c}{a}$=e2,即c=ae2
∴a+b+c=a+$\frac{1}{a}$+ae2=(e2+1)a+$\frac{1}{a}$,
又0<a<1,1<b<e,b=$\frac{1}{a}$,∴$\frac{1}{e}$<a<1,
令函数g(a)=(e2+1)a+$\frac{1}{a}$($\frac{1}{e}$<a<1),则g′(a)=e2+1-$\frac{1}{{a}^{2}}$>0,
∴g(a)在($\frac{1}{e}$,1)上单调递增,
∴g($\frac{1}{e}$)<g(a)<g(1),即2e+$\frac{1}{e}$<g(a)<e2+2.
∴2e+$\frac{1}{e}$<a+b+c<e2+2.

点评 本题考查了方程解与函数图象的关系,函数值域的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若随机变量ξ的分布列如表所示,则p1等于(  )
ξ-124
P$\frac{1}{5}$$\frac{2}{3}$p1
A.0B.$\frac{2}{15}$C.$\frac{1}{15}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,那么下列结论正确的是(  )
A.$\overrightarrow a+\overrightarrow b=\overrightarrow c$B.$\overrightarrow a+\overrightarrow b=-\overrightarrow c$C.$\overrightarrow a-\overrightarrow b=-\overrightarrow c$D.$\overrightarrow b+\overrightarrow c=\overrightarrow a$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l:y=x+m与函数f(x)=ln(x+2)的图象相切于点P.
(1)求实数m的值;
(2)证明除切点P外,直线l总在函数f(x)的图象的上方;
(3)设a,b,c是两两不相等的正实数,且a,b,c成等比数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设x∈R,则“|x-1|<1”是“x2-x-2<0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(1)若a=2,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤ax-1恒成立,求整数a的最小值.
(3)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:x1+x2≥$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某舞步每一节共九步,且每一步各不相同,其中动作A三步,动作B三步,动作C三步,同一种动作相邻,则这种舞步一节中共有多少种不同的变化(  )
A.1296种B.216种C.864种D.1080种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某城市随机抽取一年内100天的空气质量指数(AQI)的监测数据,结果统计如表:
AQI[0,50](50,100](100,150](150,200](200,300]>300
空气质量轻度污染中度污染重度污染严重污染
天数61418272015
(1)若空气质量为严重污染则企业必须放假,试估计一年中(以360天计算)企业因为空气严重污染放假的天数;
(2)已知某企业每天的经济损失y(单位:元)与空气质量指数x的关系式为
y=$\left\{\begin{array}{l}{0,0≤x≤100}\\{4x-400,100<x≤300}\\{2000,x>300}\end{array}\right.$
1)若在本年内随机抽取一天,试估计这一天的经济损失超过400元的概率;
2)若以区间中点值计算空气质量指数,试估计一年中(以360天计算)企业因空气污染原因造成的经济损失是多少元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.观察数组:(-1,1,-1),(1,2,2),(3,4,12),(5,8,40),…,(an,bn,cn),则cn的值不可能为(  )
A.112B.278C.704D.1664

查看答案和解析>>

同步练习册答案