精英家教网 > 高中数学 > 题目详情
5.若(1+2x)100=a0+a1(x-1)+a2(x-1)2+…+a100(x-1)100,则a1+a2+…+a100=5100-3100

分析 用赋值法,分别令x=2和x=1,即可求得对应结果.

解答 解:在(1+2x)100=a0+a1(x-1)+a2(x-1)2+…+a100(x-1)100中,
令x=2,得(1+2×2)100=a0+a1+a2+…+a100=5100
令x=1,得(1+2)100=a0=3100
则a1+a2+…+a100=5100-3100
故答案为:5100-3100

点评 本题考查了利用赋值法求二项式展开式系数和的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知a,b∈R,i2=-1,则“a=b=1”是“(a+bi)2=2i”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知某中学联盟举行了一次“盟校质量调研考试”活动,为了解本次考试学生的某学科成绩情况,从中抽取了部分学生的分数(满分100分),得分取整数,抽取得学生的分数均在[50,100]内作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出的频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在[50,60),[90,100]的数据).

(1)求样本容量n和频率分布直方图中x,y的值;
(2)在选取的样本中,从成绩在80分以上(含80分)的学生中随机抽取2名学生参加“升级学科基础知识竞赛”,求所抽取的2名学生中恰有1人得分在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆的中心在原点,焦点在y轴上且长轴长为4,短轴长为2,直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=m+2t}\end{array}\right.$(t为参数).当m为何值时,直线l被椭圆截得的弦长为$\sqrt{6}$?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若随机变量ξ的分布列如表所示,则p1等于(  )
ξ-124
P$\frac{1}{5}$$\frac{2}{3}$p1
A.0B.$\frac{2}{15}$C.$\frac{1}{15}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.要安排某人下月1-10号这十天值班七天,其中连续值班不能超过3天,则所有不同的值班安排方法有(  )种.
A.16B.28C.40D.56

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在二项式(1-2x)9的展开式中,
(1)求展开式的第四项;
(2)求展开式的常数项;
(3)求展开式中各项的系数和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=sinx-cosx,则$f'(\frac{π}{3})$=(  )
A.$-\frac{1}{2}-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}+\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}+\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(1)若a=2,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤ax-1恒成立,求整数a的最小值.
(3)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:x1+x2≥$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

同步练习册答案