19£®ÒÑÖªµãPÔÚÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉÏ£¬ÒÔPΪԲÐĵÄÔ²ÓëxÖáÏàÇÐÓÚÍÖÔ²µÄÓÒ½¹µãF2£¬ÇÒ$\overrightarrow{OP}$•$\overrightarrow{O{F}_{2}}$=2£¬tan¡ÏOPF2=$\sqrt{2}$£¬ÆäÖÐOÎª×ø±êÔ­µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªµãM£¨-1£¬0£©£¬ÉèQÊÇÍÖÔ²CÉϵÄÒ»µã£¬¹ýQ¡¢MÁ½µãµÄÖ±Ïßl½»yÖáÓÚµãN£¬Èô$\overrightarrow{NQ}$=2$\overrightarrow{QM}$£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨3£©×÷Ö±Ïßl1ÓëÍÖÔ²D£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1½»ÓÚ²»Í¬µÄÁ½µãS£¬T£¬ÆäÖÐSµãµÄ×ø±êΪ£¨-2£¬0£©£¬ÈôµãG£¨0£¬t£©ÊÇÏß¶ÎST´¹Ö±Æ½·ÖÏßÉÏÒ»µã£¬ÇÒÂú×ã$\overrightarrow{GS}$•$\overrightarrow{GT}$=4£¬ÇóʵÊýtµÄÖµ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¸ù¾ÝÏòÁ¿ÊýÁ¿»ý×ø±êÔËË㣬¼´¿ÉÇóµÃcµÄÖµ¼°Pµã×ø±ê£¬´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì£»
£¨2£©ÉèÖ±Ïß·½³Ì£¬¸ù¾ÝÏòÁ¿ÊýÁеÄ×ø±êÔËË㣬¼´¿ÉÇóµÃkµÄÖµ£»
£¨3£©ÉèÖ±ÏßlµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°Öеã×ø±ê¹«Ê½£¬ÇóµÃÏß¶ÎSTµÄÖеã×ø±ê£¬·ÖÀàÌÖÂÛ£¬µ±k=0ʱ£¬¼´¿ÉÇóµÃÇóµÃtµÄÖµ£¬µ±k¡Ù0ʱ£¬¸ù¾ÝÏòÁ¿µÄ×ø±êÔËË㣬¼´¿ÉÈ¡µÃtµÄÖµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâÖª£¬ÔÚ¡÷OPF2ÖУ¬PF2¡ÍOF2£¬ÓÉtan¡ÏOPF2=$\sqrt{2}$£¬µÃ£ºcos¡ÏPOF2=$\frac{\sqrt{6}}{3}$£¬
ÉèrΪԲPµÄ°ë¾¶£¬cΪÍÖÔ²µÄ°ë½¹¾à£¬
¡ß$\overrightarrow{OP}$•$\overrightarrow{O{F}_{2}}$=2£¬Ø­$\overrightarrow{OP}$Ø­•Ø­$\overrightarrow{O{F}_{2}}$Ø­cos¡ÏPOF2=2£¬¡à$\sqrt{{c}^{2}+{r}^{2}}$•c•$\frac{\sqrt{6}}{3}$=2£¬
ÓÖ£¬tan¡ÏOPF2=$\frac{c}{r}$=$\sqrt{2}$£¬½âµÃ£ºc=$\sqrt{2}$£¬r=1£¬
¡àµãPµÄ×ø±êΪ£¨¡À$\sqrt{2}$£¬1£©£¬
¡ßµãPÔÚÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉÏ£¬¡à$\frac{2}{{a}^{2}}+\frac{1}{{b}^{2}}=1$£¬
ÓÖa2-b2=c2=2£¬½âµÃ£ºa2=4£¬b2=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£»
£¨2£©ÓÉ£¨1£©ÖªÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£¬
ÓÉÌâÒâÖªÖ±ÏßlµÄбÂÊ´æÔÚ£¬¹ÊÉèÆäбÂÊΪk£¬
ÔòÆä·½³ÌΪy=k£¨x+1£©£¬N£¨0£¬k£©£¬
ÉèQ£¨x1£¬y1£©£¬¡ß$\overrightarrow{NQ}$=2$\overrightarrow{QM}$£¬
¡à£¨x1£¬y1-k£©=2£¨-1-x1£¬-y1£©£¬
¡àx1=-$\frac{2}{3}$£¬y1=$\frac{k}{3}$£¬
ÓÖ¡ßQÊÇÍÖÔ²CÉϵÄÒ»µã£¬¡à$\frac{£¨-\frac{2}{3}£©^{2}}{4}+\frac{£¨\frac{k}{3}£©^{2}}{2}=1$£¬
½âµÃk=¡À4£¬
¡àÖ±ÏßlµÄ·½³ÌΪ4x-y+4=0»ò4x+y+4=0£®
£¨3£©ÓÉÌâÒâÖªÍÖÔ²D£º$\frac{{x}^{2}}{4}+{y}^{2}=1$£¬
ÓÉS£¨-2£¬0£©£¬ÉèT£¨x1£¬y1£©£¬
¸ù¾ÝÌâÒâ¿ÉÖªÖ±Ïßl1µÄбÂÊ´æÔÚ£¬
ÉèÖ±ÏßбÂÊΪk£¬ÔòÖ±Ïßl1µÄ·½³ÌΪy=k£¨x+2£©£¬
°ÑËü´úÈëÍÖÔ²DµÄ·½³Ì£¬ÏûÈ¥y£¬ÕûÀíµÃ£º£¨1+4k2£©x2+16k2x+£¨16k2-4£©=0£¬
ÓÉΤ´ï¶¨ÀíµÃ-2+x1=-$\frac{16{k}^{2}}{1+4{k}^{2}}$£¬
Ôòx1=$\frac{2-8{k}^{2}}{1+4{k}^{2}}$£¬y1=k£¨x1+2£©=$\frac{4k}{1+4{k}^{2}}$£¬
ËùÒÔÏß¶ÎSTµÄÖеã×ø±êΪ£¨-$\frac{8{k}^{2}}{1+4{k}^{2}}$£¬$\frac{2k}{1+4{k}^{2}}$£©£¬
¢Ùµ±k=0ʱ£¬ÔòÓÐT£¨2£¬0£©£¬Ïß¶ÎST´¹Ö±Æ½·ÖÏßΪyÖᣬ
¡à$\overrightarrow{GS}$=£¨-2£¬-t£©£¬$\overrightarrow{GT}$=£¨2£¬-t£©£¬
ÓÉ$\overrightarrow{GS}$•$\overrightarrow{GT}$=-4+t2=4£¬½âµÃ£ºt=¡À2$\sqrt{2}$£®
¢Úµ±k¡Ù0ʱ£¬ÔòÏß¶ÎST´¹Ö±Æ½·ÖÏߵķ½³ÌΪy-$\frac{2k}{1+4{k}^{2}}$=-$\frac{1}{k}$£¨x+$\frac{8{k}^{2}}{1+4{k}^{2}}$£©£¬
¡ßµãG£¨0£¬t£©ÊÇÏß¶ÎST´¹Ö±Æ½·ÖÏßµÄÒ»µã£¬
Áîx=0£¬µÃ£ºt=-$\frac{6k}{1+4{k}^{2}}$£¬
¡à$\overrightarrow{GS}$=£¨-2£¬-t£©£¬$\overrightarrow{GT}$=£¨x1£¬y1-t£©£¬
ÓÉ$\overrightarrow{GS}$•$\overrightarrow{GT}$=-2x1-t£¨y1-t£©=$\frac{4£¨16{k}^{4}+15{k}^{2}-1£©}{£¨1+4{k}^{2}£©^{2}}$=4£¬½âµÃ£ºk=¡À$\frac{\sqrt{14}}{7}$£¬
´úÈët=-$\frac{6k}{1+4{k}^{2}}$£¬½âµÃ£ºt=¡À$\frac{2\sqrt{14}}{5}$£¬
×ÛÉÏ£¬Âú×ãÌõ¼þµÄʵÊýtµÄֵΪt=¡À2$\sqrt{2}$»òt=¡À$\frac{2\sqrt{14}}{5}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬Öеã×ø±ê¹«Ê½£¬ÏòÁ¿µÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£®$\overrightarrow m=£¨\sqrt{3}a{£¬_{\;}}b£©$£¬$\overrightarrow n=£¨cosB£¬sinA£©$
£¨¢ñ£©Èô$\overrightarrow m•\overrightarrow n=\sqrt{3}$c£¬Çó½ÇA£»
£¨¢ò£©ÈôÏòÁ¿$\overrightarrow m$ÓëÏòÁ¿$\overrightarrow g=£¨1£¬1£©$¹²Ïߣ¬c=2£¬ÇÒ¡÷ABCµÄÃæ»ýΪ$\sqrt{3}$£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÇÒÂú×㣺a1+a2+a3=6£¬a5=5£»ÊýÁÐ{bn}Âú×㣺bn-bn-1=${2^{{a_{n-1}}}}$£¨n¡Ý2£¬n¡ÊN*£©£¬b1=2£®
£¨¢ñ£©ÇóanºÍbn£»
£¨¢ò£©¼ÇÊýÁÐcn=anbn£¨n¡ÊN*£©£¬Èô{cn}µÄǰnÏîºÍΪTn£¬ÇóTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªµ¥Î»ÏòÁ¿$\vec a£¬\vec b$£¬ÈôÏòÁ¿$2\vec a-\vec b$Óë$\vec b$´¹Ö±£¬ÔòÏòÁ¿$\vec a$Óë$\vec b$µÄ¼Ð½ÇΪ60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Ê¡ÊµÑéÖÐѧ¸ßÈý¹²ÓÐѧÉú600ÈË£¬Ò»´ÎÊýѧ¿¼ÊԵijɼ¨£¨ÊÔ¾íÂú·Ö150·Ö£©·þ´ÓÕý̬·Ö²¼N£¨100£¬¦Ò2£©£¬Í³¼Æ½á¹ûÏÔʾѧÉú¿¼ÊԳɼ¨ÔÚ80·Öµ½100·ÖÖ®¼äµÄÈËÊýÔ¼Õ¼×ÜÈËÊýµÄ$\frac{1}{3}$£¬Ôò´Ë´Î¿¼ÊԳɼ¨²»µÍÓÚ120·ÖµÄѧÉúÔ¼ÓÐ100ÈË£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÈôÊä³öµÄn=5£¬ÔòÊäÈëµÄÕûÊýpµÄ×îСֵΪ£¨¡¡¡¡£©
A£®15B£®14C£®7D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®½«f£¨x£©=|x-1|д³É·Ö¶Îº¯ÊýÐÎʽΪf£¨x£©=$\left\{\begin{array}{l}{x-1£¬x¡Ý1}\\{1-x£¬x£¼1}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÊýÁÐ$\sqrt{3}$£¬$\sqrt{7}$£¬$\sqrt{11}$£¬$\sqrt{15}$£¬¡­µÄÒ»¸öͨÏʽÊÇ£¨¡¡¡¡£©
A£®an=$\sqrt{4n+1}$B£®an=$\sqrt{4n-1}$C£®an=$\sqrt{2n+1}$D£®an=$\sqrt{2n+3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÇúÏßy=axcosxÔÚ$£¨{\frac{¦Ð}{2}£¬0}£©$´¦µÄÇÐÏßµÄбÂÊΪ$\frac{1}{2}$£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{2}$B£®-$\frac{¦Ð}{2}$C£®$\frac{1}{¦Ð}$D£®$-\frac{1}{¦Ð}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸