·ÖÎö £¨1£©ÓÉÌâÒâ¸ù¾ÝÏòÁ¿ÊýÁ¿»ý×ø±êÔËË㣬¼´¿ÉÇóµÃcµÄÖµ¼°Pµã×ø±ê£¬´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì£»
£¨2£©ÉèÖ±Ïß·½³Ì£¬¸ù¾ÝÏòÁ¿ÊýÁеÄ×ø±êÔËË㣬¼´¿ÉÇóµÃkµÄÖµ£»
£¨3£©ÉèÖ±ÏßlµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°Öеã×ø±ê¹«Ê½£¬ÇóµÃÏß¶ÎSTµÄÖеã×ø±ê£¬·ÖÀàÌÖÂÛ£¬µ±k=0ʱ£¬¼´¿ÉÇóµÃÇóµÃtµÄÖµ£¬µ±k¡Ù0ʱ£¬¸ù¾ÝÏòÁ¿µÄ×ø±êÔËË㣬¼´¿ÉÈ¡µÃtµÄÖµ£®
½â´ð
½â£º£¨1£©ÓÉÌâÒâÖª£¬ÔÚ¡÷OPF2ÖУ¬PF2¡ÍOF2£¬ÓÉtan¡ÏOPF2=$\sqrt{2}$£¬µÃ£ºcos¡ÏPOF2=$\frac{\sqrt{6}}{3}$£¬
ÉèrΪԲPµÄ°ë¾¶£¬cΪÍÖÔ²µÄ°ë½¹¾à£¬
¡ß$\overrightarrow{OP}$•$\overrightarrow{O{F}_{2}}$=2£¬Ø$\overrightarrow{OP}$Ø•Ø$\overrightarrow{O{F}_{2}}$Øcos¡ÏPOF2=2£¬¡à$\sqrt{{c}^{2}+{r}^{2}}$•c•$\frac{\sqrt{6}}{3}$=2£¬
ÓÖ£¬tan¡ÏOPF2=$\frac{c}{r}$=$\sqrt{2}$£¬½âµÃ£ºc=$\sqrt{2}$£¬r=1£¬
¡àµãPµÄ×ø±êΪ£¨¡À$\sqrt{2}$£¬1£©£¬
¡ßµãPÔÚÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉÏ£¬¡à$\frac{2}{{a}^{2}}+\frac{1}{{b}^{2}}=1$£¬
ÓÖa2-b2=c2=2£¬½âµÃ£ºa2=4£¬b2=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£»
£¨2£©ÓÉ£¨1£©ÖªÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£¬
ÓÉÌâÒâÖªÖ±ÏßlµÄбÂÊ´æÔÚ£¬¹ÊÉèÆäбÂÊΪk£¬
ÔòÆä·½³ÌΪy=k£¨x+1£©£¬N£¨0£¬k£©£¬
ÉèQ£¨x1£¬y1£©£¬¡ß$\overrightarrow{NQ}$=2$\overrightarrow{QM}$£¬
¡à£¨x1£¬y1-k£©=2£¨-1-x1£¬-y1£©£¬
¡àx1=-$\frac{2}{3}$£¬y1=$\frac{k}{3}$£¬
ÓÖ¡ßQÊÇÍÖÔ²CÉϵÄÒ»µã£¬¡à$\frac{£¨-\frac{2}{3}£©^{2}}{4}+\frac{£¨\frac{k}{3}£©^{2}}{2}=1$£¬
½âµÃk=¡À4£¬
¡àÖ±ÏßlµÄ·½³ÌΪ4x-y+4=0»ò4x+y+4=0£®
£¨3£©ÓÉÌâÒâÖªÍÖÔ²D£º$\frac{{x}^{2}}{4}+{y}^{2}=1$£¬
ÓÉS£¨-2£¬0£©£¬ÉèT£¨x1£¬y1£©£¬
¸ù¾ÝÌâÒâ¿ÉÖªÖ±Ïßl1µÄбÂÊ´æÔÚ£¬
ÉèÖ±ÏßбÂÊΪk£¬ÔòÖ±Ïßl1µÄ·½³ÌΪy=k£¨x+2£©£¬
°ÑËü´úÈëÍÖÔ²DµÄ·½³Ì£¬ÏûÈ¥y£¬ÕûÀíµÃ£º£¨1+4k2£©x2+16k2x+£¨16k2-4£©=0£¬
ÓÉΤ´ï¶¨ÀíµÃ-2+x1=-$\frac{16{k}^{2}}{1+4{k}^{2}}$£¬
Ôòx1=$\frac{2-8{k}^{2}}{1+4{k}^{2}}$£¬y1=k£¨x1+2£©=$\frac{4k}{1+4{k}^{2}}$£¬
ËùÒÔÏß¶ÎSTµÄÖеã×ø±êΪ£¨-$\frac{8{k}^{2}}{1+4{k}^{2}}$£¬$\frac{2k}{1+4{k}^{2}}$£©£¬
¢Ùµ±k=0ʱ£¬ÔòÓÐT£¨2£¬0£©£¬Ïß¶ÎST´¹Ö±Æ½·ÖÏßΪyÖᣬ
¡à$\overrightarrow{GS}$=£¨-2£¬-t£©£¬$\overrightarrow{GT}$=£¨2£¬-t£©£¬
ÓÉ$\overrightarrow{GS}$•$\overrightarrow{GT}$=-4+t2=4£¬½âµÃ£ºt=¡À2$\sqrt{2}$£®
¢Úµ±k¡Ù0ʱ£¬ÔòÏß¶ÎST´¹Ö±Æ½·ÖÏߵķ½³ÌΪy-$\frac{2k}{1+4{k}^{2}}$=-$\frac{1}{k}$£¨x+$\frac{8{k}^{2}}{1+4{k}^{2}}$£©£¬
¡ßµãG£¨0£¬t£©ÊÇÏß¶ÎST´¹Ö±Æ½·ÖÏßµÄÒ»µã£¬
Áîx=0£¬µÃ£ºt=-$\frac{6k}{1+4{k}^{2}}$£¬
¡à$\overrightarrow{GS}$=£¨-2£¬-t£©£¬$\overrightarrow{GT}$=£¨x1£¬y1-t£©£¬
ÓÉ$\overrightarrow{GS}$•$\overrightarrow{GT}$=-2x1-t£¨y1-t£©=$\frac{4£¨16{k}^{4}+15{k}^{2}-1£©}{£¨1+4{k}^{2}£©^{2}}$=4£¬½âµÃ£ºk=¡À$\frac{\sqrt{14}}{7}$£¬
´úÈët=-$\frac{6k}{1+4{k}^{2}}$£¬½âµÃ£ºt=¡À$\frac{2\sqrt{14}}{5}$£¬
×ÛÉÏ£¬Âú×ãÌõ¼þµÄʵÊýtµÄֵΪt=¡À2$\sqrt{2}$»òt=¡À$\frac{2\sqrt{14}}{5}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬Öеã×ø±ê¹«Ê½£¬ÏòÁ¿µÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 15 | B£® | 14 | C£® | 7 | D£® | 8 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | an=$\sqrt{4n+1}$ | B£® | an=$\sqrt{4n-1}$ | C£® | an=$\sqrt{2n+1}$ | D£® | an=$\sqrt{2n+3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{¦Ð}{2}$ | B£® | -$\frac{¦Ð}{2}$ | C£® | $\frac{1}{¦Ð}$ | D£® | $-\frac{1}{¦Ð}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com