精英家教网 > 高中数学 > 题目详情
6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),右焦点为F(c,0),A(0,2),且|AF|=$\sqrt{7}$,椭圆C的离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的标准方程;
(2)设直线l的方程为y=kx+m,当直线l与椭圆C有唯一公共点M时,作OH⊥l于H(O为坐标原点),若|MH|=$\frac{3}{5}$|OM|,求k的值.

分析 (1)由已知|AF|=$\sqrt{7}$,可得$\sqrt{{c}^{2}+4}=\sqrt{7}$,求得c,再由椭圆离心率求得a,结合隐含条件求得b,则椭圆方程可求;
(2)设M为(x0,y0),由|MH|=$\frac{3}{5}$|OM|,利用勾股定理得|OH|=$\frac{4}{5}$|OM|,联立直线方程与椭圆方程,由判别式为0可得m与k的关系,并求出M的坐标,得到|OM|,再由点到直线的距离公式求得|OH|,代入|OH|=$\frac{4}{5}$|OM|即可求得k值.

解答 解:(1)由F(c,0),A(0,2),且|AF|=$\sqrt{7}$,得
$\sqrt{{c}^{2}+4}=\sqrt{7}$,解得c=$\sqrt{3}$,
又$\frac{c}{a}=\frac{\sqrt{3}}{2}$,∴a=2,则b2=a2-c2=1,
故椭圆C的标准方程为:$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(2)设M(x0,y0),由|MH|=$\frac{3}{5}$|OM|,知|OH|=$\frac{4}{5}$|OM|,
联立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得(1+4k2)x2+8kmx+4m2-4=0.
令△=64k2m2-4(1+4k2)(4m2-4)=0,得m2=1+4k2
且${{x}_{0}}^{2}=\frac{4{m}^{2}-4}{1+4{k}^{2}}$=$\frac{16{k}^{2}}{1+4{k}^{2}}$,${{y}_{0}}^{2}=1-\frac{{{x}_{0}}^{2}}{4}=\frac{1}{1+4{k}^{2}}$,
∴$|OM{|}^{2}={{x}_{0}}^{2}+{{y}_{0}}^{2}=\frac{1+16{k}^{2}}{1+4{k}^{2}}$,
由点到直线距离公式可得|OH|=$\frac{|m|}{\sqrt{1+{k}^{2}}}$.
则$|OH{|}^{2}=\frac{{m}^{2}}{1+{k}^{2}}=\frac{1+4{k}^{2}}{1+{k}^{2}}$,
由|OH|=$\frac{4}{5}$|OM|,得|OH|2=$\frac{16}{25}$|OM|2,即16k4-8k2+1=0,
解得:${k}^{2}=\frac{1}{4}$,k=$±\frac{1}{2}$.

点评 本题考查椭圆标准方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若下列关于x的方程x2+4ax-4a+3=0(a为常数),x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,则实数a的取值范围是(  )
A.$({-\frac{3}{2},-1})$B.$({-∞,-\frac{3}{2}}]∪[{-1,+∞})$C.(-2,0)D.$({-∞,-\frac{3}{2}}]∪[{0,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在面积为S的正方形ABCD内任意投一点M,则点M到四边的距离均大于$\frac{{2\sqrt{S}}}{5}$的概率为(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{25}$D.$\frac{4}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线(2m-1)x-(m+3)y-(m-11)=0恒过定点
(1)求此定点坐标.
(2)若直线的图象经过一、三、四象限,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f1(x)=cosx,f2(x)=coswx(w>0),f2(x)的图象可以看作是把f1(x)图象中的点的横坐标缩为原来的$\frac{1}{3}$(纵坐标不变)而得到的,则w=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=|2x+2|+|2x-3|.
(1)求不等式f(x)>7 的解集;
(2)若关于x的不等式f(x)≤|3m-2|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax.
(1)若a=4,求y=f(x)的单调区间;
(2)若函数f(x)在x=3处取得极值,求曲线y=f(x)在点(0,f(0))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a,b∈R,i2=-1,则“a=b=1”是“(a+bi)2=2i”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知某中学联盟举行了一次“盟校质量调研考试”活动,为了解本次考试学生的某学科成绩情况,从中抽取了部分学生的分数(满分100分),得分取整数,抽取得学生的分数均在[50,100]内作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出的频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在[50,60),[90,100]的数据).

(1)求样本容量n和频率分布直方图中x,y的值;
(2)在选取的样本中,从成绩在80分以上(含80分)的学生中随机抽取2名学生参加“升级学科基础知识竞赛”,求所抽取的2名学生中恰有1人得分在[90,100]内的概率.

查看答案和解析>>

同步练习册答案