分析 (1)因为log2f(a)=2,f(log2a)=k,所以log2(a2-2a+k)=2,log2a=0,或log2a=2,解得a,k的值;
(2)f(logax)=f(log4x)=(log4x)2-2log4x-4=(log2x-1)2-5,结合二次函数的图象和性质,可得函数的最小值.
解答 解:(1)因为log2f(a)=2,f(log2a)=k所以log2(a2-2a+k)=2,log2a=0,或log2a=2-------------3
a2-2a+k=4,a=1,或a=4,
又a>0,且a≠1,
所以a=4,k=-4--------------------------------5
(2)f(logax)=f(log4x)=(log4x)2-2log4x-4=(log2x-1)2-5.------------7
所以当log4x=1,即x=4时,f(logax)有最小值-5.-------------------------------10
点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{13\sqrt{5}}}{3}π$ | B. | 13π | C. | $\frac{{13\sqrt{3}}}{3}π$ | D. | $13\sqrt{5}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | a>c>b | C. | c>b>a | D. | b>a>c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com