精英家教网 > 高中数学 > 题目详情
10.计算:$\overrightarrow{a}$+$\overrightarrow{b}$-$\frac{1}{2}$(2$\overrightarrow{a}$-$\overrightarrow{b}$)=$\frac{3}{2}\overrightarrow{b}$.

分析 直接利用向量的加减法求解即可.

解答 解:$\overrightarrow{a}$+$\overrightarrow{b}$-$\frac{1}{2}$(2$\overrightarrow{a}$-$\overrightarrow{b}$)=$\frac{3}{2}\overrightarrow{b}$.
故答案为:$\frac{3}{2}\overrightarrow{b}$.

点评 本题考查向量的加减法的运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2-2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)当x为何值时,f(logax)有最小值?求出该最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,内角A,B,C所对的边分别为a,b,c,且tanC=$\frac{3}{4}$,c=-3bcosA.
(1)求tanB的值;
(2)若c=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.当a∈{-1,$\frac{1}{2}$,2,3}时,幂函数f(x)=xa的图象不可能经过(  )
A.第二、四象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,圆O是△ABC的外接圆,D是$\widehat{AC}$的中点,BD交AC于E.
(Ⅰ)求证:DC2=DE•DB;
(Ⅱ)若CD=4$\sqrt{3}$,点O到AC的距离等于点D到AC的距离的一半,求圆O的半径r.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.不等式组$\left\{\begin{array}{l}{x+y≥1}\\{x-2y≤4}\end{array}\right.$的解集记为D,有下面四个命题:
p1:?(x,y)∈D,x+2y≥-2
p2:?(x,y)∈D,x+2y≥-2
p3:?(x,y)∈D,x+2y≤3
p4:?(x,y)∈D,x+2y≤-1
其中的真命题是p1,p2.(用命题编号作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知定义在R上的函数f(x)满足:f(x)>0,f(x)•f(y)=f(x+y),且f(1)=$\frac{1}{2}$,当x∈(0,+∞)时f(x)<1,关于x的不等式f(a)•f(-2-xex)-4>0(其中e为自然对数的底数)恒成立,则实数a的取值范围为(-∞,-$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知命题p:关于x的函数y=loga(x2-2ax+7a-6)的定义域为R;命题q:存在x∈R,使得关于x的不等式x2-ax+4<0成立,若p或q为真命题,p且q为假命题.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行图中的程序,如果输出的结果是4,那么输入的只可能是(  )
A.-4B.2C.±2或者-4D.2或者-4

查看答案和解析>>

同步练习册答案