精英家教网 > 高中数学 > 题目详情
15.不等式组$\left\{\begin{array}{l}{x+y≥1}\\{x-2y≤4}\end{array}\right.$的解集记为D,有下面四个命题:
p1:?(x,y)∈D,x+2y≥-2
p2:?(x,y)∈D,x+2y≥-2
p3:?(x,y)∈D,x+2y≤3
p4:?(x,y)∈D,x+2y≤-1
其中的真命题是p1,p2.(用命题编号作答)

分析 作出不等式组 $\left\{\begin{array}{l}x+y≥1\\ x-2y≤4\end{array}\right.$的表示的区域D,根据线性规划的应用结合特称命题和全称命题的定义和性质对四个选项逐一分析即可.

解答 解:作出不等式组$\left\{\begin{array}{l}x+y≥1\\ x-2y≤4\end{array}\right.$表示的区域:

由图知,区域D为直线x+y=1与x-2y=4相交的上部角型区域,
显然,区域D所有的部分都在x+2y=-2的上方,故p1:?(x,y)∈D,x+2y≥-2成立;
故p1正确,p2错误,
区域D有一部分在x+2y=3的下方,故p3:?(x,y)∈D,x+2y≤3正确,
区域D全部在x+2y=-1的上方,故p4:?(x,y)∈D,x+2y≤-1错误.
综上所述p1,p2正确,
故答案为:p1,p2

点评 本题考查命题的真假判断与应用,利用线性规划的应用,结合数形结合是解决本题的关键.考查学生的运算和推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知数列{an}为等差数列,首项a1=1,公差d=2,则a5=(  )
A.6B.9C.25D.31

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线y=x+b与曲线y=3-$\sqrt{4x-{x}^{2}}$有公共点,则b的取值范围是(  )
A.[1-$\sqrt{2}$,1+$\sqrt{2}$]B.[1-$\sqrt{2}$,3]C.[1-2$\sqrt{2}$,3]D.[-1,1+$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=(2k-1)lnx+$\frac{k}{x}$+2x,有以下命题:
①当k=-$\frac{1}{2}$时,函数f(x)在(0,$\frac{1}{2}}$)上单调递增;
②当k≥0时,函数f(x)在(0,+∞)上有极大值;
③当-$\frac{1}{2}$<k<0时,函数f(x)在($\frac{1}{2}$,+∞)上单调递减;
④当k<-$\frac{1}{2}$时,函数f(x)在(0,+∞)上有极大值f(${\frac{1}{2}}$),有极小值f(-k).
其中不正确命题的序号是(  )
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.计算:$\overrightarrow{a}$+$\overrightarrow{b}$-$\frac{1}{2}$(2$\overrightarrow{a}$-$\overrightarrow{b}$)=$\frac{3}{2}\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若直线3x-y+c=0,向右平移1个单位长度再向下平移1个单位,平移后与圆x2+y2=10相切,则c的值为(  )
A.14或-6B.12或-8C.8或-12D.6或-14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.计算(lg$\frac{1}{4}$-lg25)×100${\;}^{\frac{1}{2}}$-20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)为奇函数,且当x>0时,f(x)=x3+x+1,则当x<0时解析式为f(x)=x3+x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设等比数列{an}的前n项和为Sn,若a1=3,a4=24,则S6=(  )
A.93B.189C.99D.195

查看答案和解析>>

同步练习册答案