3£®ÒÑÖªº¯Êýf£¨x£©=£¨2k-1£©lnx+$\frac{k}{x}$+2x£¬ÓÐÒÔÏÂÃüÌ⣺
¢Ùµ±k=-$\frac{1}{2}$ʱ£¬º¯Êýf£¨x£©ÔÚ£¨0£¬$\frac{1}{2}}$£©Éϵ¥µ÷µÝÔö£»
¢Úµ±k¡Ý0ʱ£¬º¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÓм«´óÖµ£»
¢Ûµ±-$\frac{1}{2}$£¼k£¼0ʱ£¬º¯Êýf£¨x£©ÔÚ£¨$\frac{1}{2}$£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£»
¢Üµ±k£¼-$\frac{1}{2}$ʱ£¬º¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÓм«´óÖµf£¨${\frac{1}{2}}$£©£¬Óм«Ð¡Öµf£¨-k£©£®
ÆäÖв»ÕýÈ·ÃüÌâµÄÐòºÅÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÛB£®¢Ú¢ÛC£®¢Ù¢ÜD£®¢Ú¢Ü

·ÖÎö Çóº¯ÊýµÄµ¼Êý£¬·Ö±ðÀûÓú¯Êýµ¥µ÷ÐԺ͵¼ÊýÖ®¼äµÄ¹ØÏµ½øÐÐÅжϼ´¿É£®

½â´ð ½â£ºº¯ÊýµÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬
º¯ÊýµÄµ¼Êýf¡ä£¨x£©=$\frac{2k-1}{x}$-$\frac{k}{{x}^{2}}$+2=$\frac{2{x}^{2}+£¨2k-1£©x-k}{{x}^{2}}$=$\frac{£¨x+k£©£¨2x-1£©}{{x}^{2}}$=$\frac{2£¨x+k£©£¨x-\frac{1}{2}£©}{{x}^{2}}$£¬
¢Ùµ±k=-$\frac{1}{2}$ʱ£¬f¡ä£¨x£©=$\frac{2£¨x-\frac{1}{2}£©^{2}}{{x}^{2}}$¡Ý0ºã³ÉÁ¢£¬Ôòº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
ÔòÔÚ£¨0£¬$\frac{1}{2}}$£©Éϵ¥µ÷µÝÔö£¬¹Ê¢ÙÕýÈ·£»
¢Úµ±k¡Ý0ʱ£¬ÓÉf¡ä£¨x£©£¾0µÃx£¾$\frac{1}{2}$£¬´Ëʱº¯ÊýΪÔöº¯Êý£¬
ÓÉf¡ä£¨x£©£¼0£¬µÃ0£¼x£¼$\frac{1}{2}$£¬´Ëʱº¯ÊýΪ¼õº¯Êý£¬¼´µ±x=$\frac{1}{2}$ʱ£¬º¯Êýf£¨x£©´æÔÚ¼«Ð¡Öµ£¬
¼´¿Éº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÓм«´óÖµ´íÎ󣬹ʢڴíÎó£»
¢Ûµ±-$\frac{1}{2}$£¼k£¼0ʱ£¬Ôò0£¼-k£¼$\frac{1}{2}$£¬
ÓÉf¡ä£¨x£©£¼0µÃ-k£¼x£¼$\frac{1}{2}$£¬
ÓÉf¡ä£¨x£©£¾0µÃ0£¼x£¼-k»òx£¾$\frac{1}{2}$£¬¼´º¯Êýf£¨x£©ÔÚ£¨$\frac{1}{2}$£¬+¡Þ£©Éϵ¥µ÷µÝÔö£»¹Ê¢Û´íÎó£¬
¢Üµ±k£¼-$\frac{1}{2}$ʱ£¬-k£¾$\frac{1}{2}$£¬ÓÉf¡ä£¨x£©£¾0µÃ0£¼x£¼$\frac{1}{2}$»òx£¾-k£¬´Ëʱº¯Êýµ¥µ÷µÝÔö£¬
ÓÉf¡ä£¨x£©£¼0µÃ$\frac{1}{2}$£¼x£¼-k£¬¼´º¯ÊýΪ¼õº¯Êý£¬
¼´º¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÓм«´óÖµf£¨${\frac{1}{2}}$£©£¬Óм«Ð¡Öµf£¨-k£©£®¹Ê¢ÜÕýÈ·£¬
¹Ê²»ÕýÈ·ÃüÌâµÄÐòºÅ¢Ú¢Û£¬
¹ÊÑ¡£ºB

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬Éæ¼°º¯ÊýµÄµ¥µ÷ÐԺ͵¼ÊýµÄ¹ØÏµ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÉèÈ«¼¯U=R£¬¼¯ºÏA={x|-1£¼x£¼4}£¬B={y|y=x+1£¬x¡ÊA}£¬£¨∁UA£©¡É£¨∁UB£©=£¨-¡Þ£¬-1]¡È[5£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®É躯Êýy=xcosx-sinxµÄͼÏóÉϵĵ㣨x0£¬y0£©´¦µÄÇÐÏßµÄбÂÊΪk£¬Èôk=g£¨x0£©£¬Ôòº¯Êýk=g£¨x0£©µÄͼÏóΪ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑ֪бÂÊΪ1µÄÖ±ÏßlÓëÅ×ÎïÏßy2=2px£¨p£¾0£©½»ÓÚλÓÚxÖáÉÏ·½µÄ²»Í¬Á½µãA£¬B£¬¼ÇÖ±ÏßOA£¬OBµÄбÂÊ·Ö±ðΪK1£¬K2£¬ÔòK1+K2µÄȡֵ·¶Î§ÊÇ£¨4£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®µ±a¡Ê{-1£¬$\frac{1}{2}$£¬2£¬3}ʱ£¬Ãݺ¯Êýf£¨x£©=xaµÄͼÏ󲻿ÉÄܾ­¹ý£¨¡¡¡¡£©
A£®µÚ¶þ¡¢ËÄÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªÊýÁÐ{an}ÊǵȲîÊýÁУ¬{bn}ÊǵȱÈÊýÁУ¬ÇÒam=bm=16£¬am+4=bm+4£¬m¡ÊN*£¬ÔòÏÂÁдóС¹ØÏµÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®am+1£¼am+2B£®am+1£¾bm+2C£®bm+2£¼am+2D£®bm+1£¾bm+2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®²»µÈʽ×é$\left\{\begin{array}{l}{x+y¡Ý1}\\{x-2y¡Ü4}\end{array}\right.$µÄ½â¼¯¼ÇΪD£¬ÓÐÏÂÃæËĸöÃüÌ⣺
p1£º?£¨x£¬y£©¡ÊD£¬x+2y¡Ý-2
p2£º?£¨x£¬y£©¡ÊD£¬x+2y¡Ý-2
p3£º?£¨x£¬y£©¡ÊD£¬x+2y¡Ü3
p4£º?£¨x£¬y£©¡ÊD£¬x+2y¡Ü-1
ÆäÖеÄÕæÃüÌâÊÇp1£¬p2£®£¨ÓÃÃüÌâ±àºÅ×÷´ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªÃݺ¯Êýf£¨x£©=£¨k2+k-1£©x${\;}^{{k}^{2}-3k}$£¨k¡ÊZ£©µÄͼÏó¹ØÓÚyÖá¶Ô³Æ£¬ÇÒÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬ÔòkµÄֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=x2+2£¨a-1£©x+2£¬x¡Ê[-2£¬4]£®
£¨1£©µ±a=2ʱ£¬Çóf£¨x£©µÄ×î´óÖµÓë×îСֵ£»
£¨2£©ÔÚÇø¼ä[-2£¬4]ÉÏÊǵ¥µ÷º¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸