分析 (1)利用开口方向和对称轴判断f(x)的单调性,根据f(x)的单调性和对称性计算f(x)的最值;
(2)根据单调性得出对称轴与区间端点值的关系,从而解出a的范围.
解答 解:(1)当a=2时,f(x)=x2+2x+2,
f(x)的对称轴为直线x=-1,
∴函数f(x)在[-2,-1]上为减函数,在[-1,4]上为增函数,
∴f(x)min=f(-1)=1,f(x)max=f(4)=26.
(2)∵f(x)=x2+2(a-1)x+2的对称轴是直线x=1-a,
又f(x)在[-2,4]上是单调函数,
∴1-a≥4或1-a≤-2,
∴a≤-3或a≥3,
∴a的取值范围为{a|a≤-3或a≥3}.
点评 本题考查了二次函数的单调性与对称轴的关系,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ②③ | C. | ①④ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com