精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=x2+2(a-1)x+2,x∈[-2,4].
(1)当a=2时,求f(x)的最大值与最小值;
(2)在区间[-2,4]上是单调函数,求实数a的取值范围.

分析 (1)利用开口方向和对称轴判断f(x)的单调性,根据f(x)的单调性和对称性计算f(x)的最值;
(2)根据单调性得出对称轴与区间端点值的关系,从而解出a的范围.

解答 解:(1)当a=2时,f(x)=x2+2x+2,
f(x)的对称轴为直线x=-1,
∴函数f(x)在[-2,-1]上为减函数,在[-1,4]上为增函数,
∴f(x)min=f(-1)=1,f(x)max=f(4)=26.
(2)∵f(x)=x2+2(a-1)x+2的对称轴是直线x=1-a,
又f(x)在[-2,4]上是单调函数,
∴1-a≥4或1-a≤-2,
∴a≤-3或a≥3,
∴a的取值范围为{a|a≤-3或a≥3}.

点评 本题考查了二次函数的单调性与对称轴的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=(2k-1)lnx+$\frac{k}{x}$+2x,有以下命题:
①当k=-$\frac{1}{2}$时,函数f(x)在(0,$\frac{1}{2}}$)上单调递增;
②当k≥0时,函数f(x)在(0,+∞)上有极大值;
③当-$\frac{1}{2}$<k<0时,函数f(x)在($\frac{1}{2}$,+∞)上单调递减;
④当k<-$\frac{1}{2}$时,函数f(x)在(0,+∞)上有极大值f(${\frac{1}{2}}$),有极小值f(-k).
其中不正确命题的序号是(  )
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)为奇函数,且当x>0时,f(x)=x3+x+1,则当x<0时解析式为f(x)=x3+x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,已知圆O的方程为x2+y2=2
(1)若直线l与圆O切于第一象限,且与坐标轴交于点D,E,当DE长最小时,求直线l的方程;
(2)设M,P是圆O上任意两点,点M关于x轴的对称点N,若直线MP,NP分别交x轴于点(m,0)(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知平面ABB1N⊥平面BB1C1C,四边形BB1C1C,是矩形,ABB1N是梯形,且AN⊥AB,AN∥BB1,AB=BC=AN=4,BB1=8.
(1)求证:BN⊥平面C1B1N;
(2)若M为AB中点,P是BC边上一点,且满足$\frac{BP}{PC}$=$\frac{1}{3}$,求证:MP∥平面CNB1
(3)求多面体ABB1NCC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)求函数f(x)=x2-2x+2.在区间[$\frac{1}{2}$,3]上的最大值和最小值;
(2)已知f(x)=ax3+bx-4,若f(2)=6,求f(-2)的值
(3)计算0.0081${\;}^{\frac{1}{4}}$+(4${\;}^{-\frac{3}{4}}$)2+($\sqrt{8}$)${\;}^{-\frac{4}{3}}$-16-0.75+3${\;}^{lo{g}_{3}4}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设等比数列{an}的前n项和为Sn,若a1=3,a4=24,则S6=(  )
A.93B.189C.99D.195

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设全集u={1,2,3,4,5,6,7,8,9},集合A={1,2,3,4,5,6},B={4,5,6,7,8}
(1)求A∩B
(2)求A∪B
(3)求∁uA∪∁uB
(4)求∁uA∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=loga(x-1)+4(a>0且a≠1)恒过定点P,若点P也在幂函数g(x)的图象上,则g(3)=9.

查看答案和解析>>

同步练习册答案