精英家教网 > 高中数学 > 题目详情
12.已知幂函数f(x)=(k2+k-1)x${\;}^{{k}^{2}-3k}$(k∈Z)的图象关于y轴对称,且在(0,+∞)上是减函数,则k的值为1.

分析 根据幂函数的单调性列出不等式,由k∈N*求出k的值,并分别求出函数的解析式,判断函数的图象是否关于y轴对称,即可得到答案.

解答 解:由函数f(x)是幂函数,
则k2+k-1=1,解得:k=-2或k=1,
k=-2时,f(x)=x14
k=1时,f(x)=$\frac{1}{{x}^{4}}$,
而函数的图象关于y轴对称,且在(0,+∞)上是减函数,
故k=1,
故答案为:1.

点评 本题考查了幂函数的定义,考查函数的单调性和对称性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{log_2}(3-x)\\ f(x-1)-f(x-2)\end{array}\right.\begin{array}{l}x≤0\\ x>0\end{array}$,则f(11)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=(2k-1)lnx+$\frac{k}{x}$+2x,有以下命题:
①当k=-$\frac{1}{2}$时,函数f(x)在(0,$\frac{1}{2}}$)上单调递增;
②当k≥0时,函数f(x)在(0,+∞)上有极大值;
③当-$\frac{1}{2}$<k<0时,函数f(x)在($\frac{1}{2}$,+∞)上单调递减;
④当k<-$\frac{1}{2}$时,函数f(x)在(0,+∞)上有极大值f(${\frac{1}{2}}$),有极小值f(-k).
其中不正确命题的序号是(  )
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若直线3x-y+c=0,向右平移1个单位长度再向下平移1个单位,平移后与圆x2+y2=10相切,则c的值为(  )
A.14或-6B.12或-8C.8或-12D.6或-14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.计算(lg$\frac{1}{4}$-lg25)×100${\;}^{\frac{1}{2}}$-20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在等差数列{an}中,a2=1,a4=7,则{an}的前5项和S5=20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)为奇函数,且当x>0时,f(x)=x3+x+1,则当x<0时解析式为f(x)=x3+x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,已知圆O的方程为x2+y2=2
(1)若直线l与圆O切于第一象限,且与坐标轴交于点D,E,当DE长最小时,求直线l的方程;
(2)设M,P是圆O上任意两点,点M关于x轴的对称点N,若直线MP,NP分别交x轴于点(m,0)(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设全集u={1,2,3,4,5,6,7,8,9},集合A={1,2,3,4,5,6},B={4,5,6,7,8}
(1)求A∩B
(2)求A∪B
(3)求∁uA∪∁uB
(4)求∁uA∩B.

查看答案和解析>>

同步练习册答案