精英家教网 > 高中数学 > 题目详情
5.如图,圆O是△ABC的外接圆,D是$\widehat{AC}$的中点,BD交AC于E.
(Ⅰ)求证:DC2=DE•DB;
(Ⅱ)若CD=4$\sqrt{3}$,点O到AC的距离等于点D到AC的距离的一半,求圆O的半径r.

分析 (Ⅰ)证明△BDC∽△CDE,即可证明:DC2=DE•DB;
(Ⅱ)连结OD,OD⊥AC,设垂足为F,求出$OF=\frac{1}{3}r\;\;,\;\;DF=\frac{2}{3}r$,利用勾股定理建立方程,即可得出结论.

解答 (Ⅰ)证明:∵D是$\widehat{AC}$的中点,∴∠ABD=∠CBD
又∵∠ABD=∠ACD
∴∠CBD=∠ACD,∠BDC=∠CDE,
∴△BDC∽△CDE,
∴$\frac{BD}{CD}=\frac{DC}{DE}$,即DC2=DE•DB,…(5分)
(Ⅱ)解:连结OD,
∵D是$\widehat{AC}$的中点,
∴OD⊥AC,设垂足为F,
则$OF=\frac{1}{2}DF\;\;,\;\;OF+DF=OD=r$,
∴$OF=\frac{1}{3}r\;\;,\;\;DF=\frac{2}{3}r$,
在Rt△OFC中,OF2+FC2=r2,∴$F{C^2}=\frac{8}{9}{r^2}$,
在Rt△DFC中,DF2+FC2=CD2=48,即${({\frac{2}{3}r})^2}+\frac{8}{9}{r^2}=48$,
得r=6.…(10分)

点评 本题考查三角形相似的判定与性质的运用,考查勾股定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=ax+2+1(a>0,a≠1),则此函数必过定点(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若a=3${\;}^{\frac{1}{3}}$,b=log43,则log3a=$\frac{1}{3}$,a与b的大小关系是a>b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知命题p:“若ac≥0,则二次方程ax2+bx+c=0没有实根”,它的否命题为Q.
(Ⅰ)写出命题Q;
(Ⅱ)判断命题Q的真假,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在长方体ABCD-A1B1C1D1中,已知AB=AA1=1,BC=2,求异面直线AC与DB1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.计算:$\overrightarrow{a}$+$\overrightarrow{b}$-$\frac{1}{2}$(2$\overrightarrow{a}$-$\overrightarrow{b}$)=$\frac{3}{2}\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.定义在R上的函数f(x),当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)•f(b).
(1)求证:f(0)=1;
(2)求证:对任意的x∈R,恒有f(x)>0;
(3)若f(x)•f(2x-x2)>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)满足f(x)=2f($\frac{1}{x}$),当x∈[1,3]时,f(x)=lnx,若在区间[$\frac{1}{3}$,3]内,存在互不相等的实数a,b使f(a)=f(b),则ab的取值范围为(1,$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,是奇函数且在区间(-∞,0)上为增函数的是(  )
A.f(x)=lgxB.y=x3C.y=x-1D.y=ex

查看答案和解析>>

同步练习册答案