精英家教网 > 高中数学 > 题目详情
14.若函数f(x)=ax+2+1(a>0,a≠1),则此函数必过定点(-2,2).

分析 令x+2=0求得f(x)=a0+1=2,可得函数的图象经过得定点的坐标.

解答 解:令x+2=0,即x=-2,可得f(x)=a0+1=2,
可得函数的图象经过点,(-2,2),
故答案为:(-2,2).

点评 本题主要考查指数函数的单调性和特殊点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.“方程$\frac{x^2}{2-n}$+$\frac{y^2}{n+1}$=1表示焦点在x轴的椭圆”是“-1<n<2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,在区间(0,+∞)上是增函数的是(  )
A.y=-2x+1B.y=x2-2C.y=$\frac{1}{x}$D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ax3+bx2+cx+d(a<$\frac{2}{3}$b),在R上是单调递增函数,则$\frac{3a+2b+c}{2b-3a}$的最小值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{3x,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$则f[f($\frac{1}{2}$)]的值是(  )
A.-3B.3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2-2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)当x为何值时,f(logax)有最小值?求出该最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在等比数列{an}中,已知a4=3a3,则$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{4}}{{a}_{2}}$+$\frac{{a}_{6}}{{a}_{3}}$+…+$\frac{{a}_{2n}}{{a}_{n}}$=(  )
A.$\frac{{3}^{-n}-3}{2}$B.$\frac{{3}^{1-n}-3}{2}$C.$\frac{{3}^{n}-3}{2}$D.$\frac{{3}^{n+1}-3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)${(5\frac{1}{16})^{0.5}}-2×{(2\frac{10}{27})^{-\frac{2}{3}}}-2×{(\sqrt{2+π})^0}$÷${(\frac{3}{4})^{-2}}$;
(2)2lg5+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,圆O是△ABC的外接圆,D是$\widehat{AC}$的中点,BD交AC于E.
(Ⅰ)求证:DC2=DE•DB;
(Ⅱ)若CD=4$\sqrt{3}$,点O到AC的距离等于点D到AC的距离的一半,求圆O的半径r.

查看答案和解析>>

同步练习册答案